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I. Introduction
Pursuit and evasion has a strong aerospace connotation. In Surface-to-Air Missile (SAM) engagements the standard

procedure is to fire two SAMs to intercept a threat. It is conventional wisdom that the probability of kill of a SAM

is PK = 0.8 and therefore when two SAMs are launched the probability of kill is enhanced and is PK = 0.96. Note,

however, that it is herein tacitly assumed that the SAMs are “independent” statistically speaking. Their effectiveness

could be improved if they were cooperatively guided. Thus, in this paper the foundational pursuit-evasion differential

game in the Euclidean plane where two Pursuers P1 and P2 cooperatively chase an Evader E , is considered. The three

players are holonomic, the speeds of the Pursuers each being greater than that of the Evader. We are interested in point

capture by either one, or both, P1 and/or P2. The payoff of E and the cost of the P1 & P2 team is time-to-capture.

Thus, Isaacs’ classical “Two Cutters and a Fugitive Ship” differential game is revisited. Interestingly, the Two Cutters

and Fugitive Ship pursuit game was posed by Hugo Steinhaus back in 1925 – his original paper was reprinted in 1960

in [1]∗. The solution, sans a proof, of the differential game is presented in Isaacs’ ground breaking book [2, Example

6.8.3, pp. 148-149] where the players’ optimal strategies were derived using a geometric method. Since then, several

others have investigated the game as well as other closely related games. In [3], the game of one fast pursuer against

two evaders is solved. Ganebny et al. consider a two pursuer one evader game on a line [4]. Most recently, the two

pursuer one evader scenario (in two dimensions) was investigated in [5] wherein evader strategies are derived for the

case where the Evader knows the Pursuers’ strategies. In [6] a proof of the optimality of the three players’ strategies

proposed by Isaacs is undertaken. Reference [7] analyzes the two-pursuer one-evader game with a finite capture radius,
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Department of Defense, or the United States Government
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making use of the costate equilibrium dynamics to solve a boundary value problem backwards in time. The extension

of this game for any number of pursuers is explored in [8] wherein open loop strategies are proposed with no proof

of optimality. We also note the presence of a significant body of literature on both the two-on-one and multi-on-one

differential games with one or more of the following features: fixed duration, cost/payoff defined as terminal miss

distance, various kinematic/dynamic models (e.g., inertial vs. non-inertial, bounded acceleration, bounded velocity,

etc.), integral constraints, and/or a superior evader [9–15].

In this paper, some geometric features, perhaps overlooked by Isaacs, but with a bearing on extensions, are addressed:

The state space regions where pursuit devolves into Pure Pursuit (PP) by either P1 or P2, or into a pincer movement

pursuit by the P1 & P2 team who cooperatively capture the evader, are characterized. Thus, in this paper, a complete

solution of the Game of Kind is provided. Furthermore, in this paper, a three dimensional reduced state space for

analyzing the two-on-one pursuit-evasion differential game is introduced and the players’ state feedback strategies as

well as the Value function are explicitly derived.

The paper is organized as follows. The geometric method employed by Isaacs to solve the Two Cutters and Fugitive

Ship differential game is expounded on in Section II. In Section III a three-states reduced state space reformulation of

the Two-on-One pursuit-evasion differential game is introduced and Isaacs’ geometric method is employed to yield the

players’ optimal state feedback strategies and the game’s Value function in closed form. Furthermore, the state space

regions where either one of the pursuers captures the evader and the state space region where both pursuers cooperatively

and isochronously capture the evader are characterized, thus solving the Game of Kind. Possible extensions are also

discussed in Section III. Conclusions are presented in Section IV.

II. The Geometric Method
We assume that the fast pursuers P1 and P2 have equal speed, which we normalize to 1. The problem parameter is

the speed of the evader E which is 0 ≤ µ < 1.

There are three players in the Euclidean plane so the realistic state space is obviously R6, however the state space

could be reduced to R4 by collocating the origin of a non rotating (x, y) Cartesian frame at E’s instantaneous position.

Since the players are holonomic, the dynamics A matrix is 0 – there are no dynamics. This, and the fact that the

performance functional is the time-to-capture, yields a Hamiltonian s.t. the costates are all constant. This suggests that

the optimal flow field might consist of straight line trajectories. Hence geometry might come into play. To obtain the

Two Cutters and Fugitive Ship differential game’s solution, Isaacs employed the geometric concept of an Apollonius

circle to delineate the Boundary of a Safe Region (BSR) for the Evader: In pursuit-evasion differential games an

Apollonius circle is constructed based on the E-P separation and the speed ratio µ < 1. The Apollonius circle concept

is conducive to the geometric solution of the Two Cutters and Fugitive Ship differential game, as will be demonstrated

in the sequel. For a more thorough treatment of the Apollonius circle, see [16]; we include the main features here for

2



reference. The Apollonius circle radius and circle center (along the ray −−→
PE) are given by,

ρ =
µ

1 − µ2 PE, (1)

xO =
µ2

1 − µ2 PE, yO = 0. (2)

A. Isaacs’ Geometric Solution

We first present the solution of the Two Cutters and Fugitive Ship differential game in the realistic plane using the

geometric method. Two Apollonius circles, C1, whose foci are at E and P1 and the Apollonius circle C2, whose foci are

are at E and P2, feature in this game. E is in the interior of both Apollonius disks but the two Apollonius circles might

or might not intersect. Concerning the calculation of the points of intersection, if any, of the Apollonius circles C1

and C2: Subtracting the equation of circle C1 from the equation of circle C2 yields a linear equation in two unknowns,

say, X and Y . One can thus back out Y as a function of X and insert this expression into one of the circle equations,

thus obtaining a quadratic equation in X: The calculation of the two points of intersection of the Apollonius circles C1

and C2 boils down to the solution of a quadratic equation. The Apollonius circles intersect iff the quadratic equation

has real solutions, in other words, the discriminant of the quadratic equation is positive. When the discriminant of the

quadratic equation is negative we are automatically notified that the Apollonius circles don’t intersect, and because E

is in the interior of both Apollonius disks, we conclude that one of the Apollonius disks is contained in the interior of

the second Apollonius disk. If ρ2 > ρ1, which is the case iff E is closer to P1 than to P2 – see (1) – the circle C2 is

discarded, and vice versa. The geometry is illustrated in Fig. 1.

Figure 1 One Cutter Action

When the Apollonius circles don’t intersect, the pursuer associated with the outer Apollonius circle is irrelevant

to the chase. This is so because the configuration is s.t. should P1 employ PP and E run for his life, player P2 cannot

reach E before the latter is captured by P1 because he is too far away from the P1/E engagement, or is too slow to close
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in and join the fight. This renders player P2 irrelevant. As far as the geometric method is concerned, the Apollonius

disk associated with player P1 is then contained in the interior of the bigger Apollonius disk associated with player P2,

as illustrated in Fig. 1. In this case the pursuer P1 on which the inner Apollonius circle is based will singlehandedly

capture the evader: He will optimally employ PP while the Evader runs for his life and will be captured at I; the game

with two pursuers devolved to the simple pursuit-evasion game with one pursuer and one evader where P1 employs PP

and E runs away from P1. Similarly, if the Apollonius disk associated with P2 is contained in the interior of the bigger

Apollonius disk associated with player P1, player P2 will employ PP while E runs for his life; P1 is then redundant.

The interesting case, considered in [2], where the Apollonius circles intersect is illustrated in Fig. 2.

Figure 2 Solution of Two Cutters and Fugitive Ship Game

Since there are two pursuers, similar to Figure 6.8.5 in [2], a lens-shaped BSR, delineated in green, is formed

by the intersection of the two Apollonius circles. To calculate the aim point I which is one of the two points where

the Apollonius circles C1 and C2 intersect requires solving a quadratic equation; the quadratic equation has two real

solutions and among the two points of intersection of the Apollonius circles, the aim point I is the point farthest from

E . Thus, E heads toward the most distant point I on the BSR, and so do P1 and P2. Both pursuers P1 and P2 will be

active and cooperatively and isochronously capture the evader at point I – see Fig. 2.

When the discriminant of the quadratic equation is zero the quadratic equation has a repeated real root. Geomet-

rically this means that one of the Apollonius circles is tangent from the inside to the second Apollonius circle. The

following holds.

Proposition 1. Assume the Apollonius circles C1 and C2 are tangent, that is, the discriminant of the quadratic equation

vanishes. The aim point of the three players is then the circles’ point of tangency, say T , that is, I = T , iff the three

players E , P1 and P2 are collinear and E is sandwiched between P1 and P2.

When the Apollonius circles C1 and C2 are tangent and their point of tangency T is s.t. T = I, the points P2, T, O1,

E , O2 and P1 are collinear and both pursuers employ PP to isochronously capture the evader. This is illustrated in
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Fig. 3.

Figure 3 PP by P1 and P2

Note however that when, as above, P1, P2 and E are collinear and E is sandwiched between P1 and P2, but the

Apollonius circles intersect, E will break out – see Fig. 4.

Figure 4 Breakout of E

If the Apollonius circles C1 and C2 are tangent, however E is not on the segment P1P2, the players’ aim point I is

not the circles’ point of tangency T : If the tangent Apollonius circles are s.t. the Apollonius circle C1 is contained in

the Apollonius disk formed by the Apollonius circle C2, optimal play then consists of the active player being P1 and

employing PP while E runs away from P1 and player P2 is redundant; and if the Apollonius circle C2 is contained in
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the Apollonius disk formed by the Apollonius circle C1, optimal play then consists of the active player being P2 and

employing PP while E runs away from P2, and now player P1 is redundant; the circles’ point of tangency T plays no

role here. This should alert us to the fact that even though the Apollonius circles intersect at their point of tangency,

that is, C1 ∩ C2 , ∅ and T ∈ C1 ∩ C2, the players’ aim point I ∋ C1 ∩ C2.

III. Geometric Solution in Reduced State Space
Similar to Isaacs’ treatment of the Homicidal Chauffeur differential game, it is beneficial to analyze the Two Cutters

and Fugitive Ship differential game in a reduced state space. The dimension of the Two Cutters and Fugitive Ship

game’s state space can be reduced to three using a non-inertial, rotating reference frame, by pegging the x-axis to P1

and P2’s instantaneous positions. The y-axis is the orthogonal bisector of the P1P2 segment. In this rotating (x, y)

reference frame the states are E’s x and y-coordinates (xE, yE ) and the x-position xP of P1. In this reduced state space

the y-coordinate of P1 will always be 0 and the position of P2 will be (−xP, 0). Without loss of generality we assume

xE ≥ 0 and yE ≥ 0. The rotating reference frame (x, y) is shown overlaid on the realistic plane (X,Y ) in Fig. 5 where

the P1, E and P2 players’ headings χ, ϕ and ψ are also indicated. Without loss of generality, the rotating reference

frame (x, y) is initially aligned with the inertial frame (X,Y ).

Figure 5 Rotating Reference Frame

Using the rotating reference frame (x, y), the state space of the Two Cutters and Fugitive Ship differential game is

reduced to the first quadrant of R3, that is, the set

R3
1 ≡ {(xP, xE, yE ) | xP ≥ 0, yE ≥ 0}
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Symmetry allows us to confine our attention to the case where xE ≥ 0, that is, the state will evolve in the positive

orthant of R3, that is, in

R3
+ = {(xP, xE, yE ) | xP ≥ 0, xE ≥ 0, yE ≥ 0},

where the three-state nonlinear dynamics of the Two Cutters and Fugitive Ship differential game are

ÛxP =
1
2
(cos χ − cosψ), xP(0) = xP0 (3)

ÛxE = µ cos ϕ − 1
2
(cos χ + cosψ) + 1

2
yE

xP
(sin χ − sinψ) , xE (0) = xE0 (4)

ÛyE = µ sin ϕ − 1
2
(sin χ + sinψ) − 1

2
xE
xP

(sin χ − sinψ) , yE (0) = yE0 . (5)

A. Game of Kind in Reduced State Space

The solution of the Game of Kind determines which pursuer actually captures the evader under optimal play: P1,

P2, or simultaneous capture by both pursuers. More specifically, the Game of Kind partitions the state space into three

regions which dictate the outcome of the differential game under optimal play. The solution of the Game of Kind in

the reduced state space (xP, xE, yE ) using the geometric method proceeds as follows.

We have two Apollonius circles: C1 is based on the instantaneous positions of E and P1, and C2 is based on the

instantaneous positions of E and P2. In the (x, y) frame, see Fig. 4 and (2), the center O1 of the Apollonius circle C1 is

at

xO1 =
1

1 − µ2

(
xE − µ2xP

)
, yO1 =

1
1 − µ2 yE .

Similarly, the center O2 of the Apollonius circle C2 is at

xO2 =
1

1 − µ2

(
xE + µ2xP

)
, yO2 =

1
1 − µ2 yE .

Thus, using (1), the equation of the Apollonius circle C1 is

[
x − 1

1 − µ2

(
xE − µ2xP

)]2
+

(
y − 1

1 − µ2 yE

)2
=

µ2(
1 − µ2)2 [

(xE − xP)2 + y2
E

]
, (6)

and the equation of the Apollonius circle C2 is

[
x − 1

1 − µ2

(
xE + µ2xP

)]2
+

(
y − 1

1 − µ2 yE

)2
=

µ2(
1 − µ2)2 [

(xE + xP)2 + y2
E

]
. (7)

In the (x, y) reference frame the y-coordinate of the C1 and C2 Apollonius circles’ centers is the same and therefore the

7



distance d between the circles’ centers is

d = xO2 − xO1

=
2µ2

1 − µ2 xP

Hence, because the radii of the Apollonius circles are s.t. ρ1 < ρ2 iff xE > 0, the Apollonius circles C1 and C2 intersect

iff

d + ρ1 > ρ2,

that is,

2µxP + d1 > d2.

In other words, the inequality holds

2µxP >

√
(xP + xE )2 + y2

E −
√
(xP − xE )2 + y2

E

which yields the algebraic condition: The Apollonius circles C1 and C2 intersect iff

µ2y2
E +

(
1 − µ2

) (
µ2x2

P − x2
E

)
≥ 0. (8)

In light of this, the reduced state space R3
1 is partitioned as follows.

R3
1 = R1 ∪ R2 ∪ R1,2

During optimal play in R1, E is captured solely by P1 while P2 is redundant, in R2 E is captured solely by P2 while

P1 is redundant, while in R1,2, E is isochronously captured by P1 and P2. At this point it appears that things stand as

follows. If condition (8) does not hold and xE > 0 the state is in R1, where E is captured solo by P1. If condition

(8) does not hold and xE < 0 the state is in R2, where E is captured solo by P2: From a kinematic point of view, the

state is in R1 if Collision Course (CC) guidance won’t allow P2 to capture E who is running away from P1, before P1,

using Pure Pursuit (PP), captures E. Similarly, the state is in R2 if CC guidance won’t allow P1 to capture E who is

running away from P2, before P2, using PP, captures E. As far as geometry is concerned, let Di denote the disk which

corresponds to the Apollonius circle Ci , i = 1, 2. In view of the discussion from above, it would appear that the set R1

is characterized by D1 ⊂ D2 – see Fig. 1; similarly, the set R2 is characterized by D2 ⊂ D1, and if condition (8) holds

– see Fig. 2 where the Apollonius circles C1 and C2 intersect – one might then be inclined to think that the state is in

R1,2, so that during optimal play E is isochronously captured by P1 and P2. And as far as the characterization of the
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sets R1 and R2 is concerned, since xE ≥ 0 implies ρ1 ≤ ρ2, the disk D2 cannot be contained in the disk D1, so either

D1 ⊂ D2 or the Apollonius circles C1 and C2 intersect. The geometric condition

D1 ⊂ D2 ⇒ d + ρ1 < ρ2

lets us recover the algebraic condition (8):

C1 ∩ C2 , ∅ ⇔ d + ρ1 > ρ2 ⇔ µ2y2
E +

(
1 − µ2

) (
µ2x2

P − x2
E

)
> 0,

as expected. The algebraic condition (8) delineates the set in R3
+,

K1 =
{
(xP, xE, yE ) | xP ≥ 0, xE ≥ 0, µ2y2

E +
(
1 − µ2

) (
µ2x2

P − x2
E

)
< 0

}
.

This is a cone whose xE cross sections are arcs of ellipses.When the state is in the interior of the elliptical cone K1 or

in its projection onto the plane yE = 0, D1 ⊂ D2 and so E is captured by P1 only. Thus, one is inclined to set R1 ≡ K1.

Similarly, when the state is in the interior of the elliptical cone

K2 =
{
(xP, xE, yE ) | xP ≥ 0, xE ≤ 0, µ2y2

E +
(
1 − µ2

) (
µ2x2

P − x2
E

)
< 0

}
or in its projection onto the plane yE = 0, D2 ⊂ D1 and so E is captured by P2 only; the set K2 is the mirror image of

the cone K1 about the plane xE = 0 and one is inclined to set R2 ≡ K2. The boundary of the elliptical cone K1 is the set

of states s.t. the Apollonius circle C1 is contained in the Apollonius disk formed by the bigger circle C2 and is tangent

to the Apollonius circle C2; similarly, the boundary of the elliptical cone K2 is the set of states s.t. the Apollonius circle

C2 is contained in the Apollonius disk formed by the bigger circle C1 and is tangent to the Apollonius circle C1. When

the state is on the boundary of the elliptical cones K1 or K2 the Apollonius circles C1 and C2 are tangent, say, at point T .

According to Proposition 1, the players’ aim point I is the point of tangency T of the Apollonius circles iff yE = 0 and

the tangent to the Apollonius circles at T = I is the orthogonal bisector of the segment P1P2; and from (8) we deduce

xE = µxP; E is then isochronously captured by P1 and P2 who employ PP – as illustrated in Fig. 3. Note that if xE = 0,

condition (8) holds, so the quarter plane {(xP, xE, yE ) | xP ≥ 0, xE = 0, yE ≥ 0} ⊂ R1,2 and E is isochronously

captured by P1 and P2. Obviously E is also isochronously captured by P1 and P2 when xP = 0. And so far, it would

appear that during “optimal” play, when the state is outside the elliptical cones K1 and K2 where the inequality (8)

holds, that is, the state is in what appears to be R1,2, E will be isochronously captured by the P1&P2 team. Thus, at

first blush it would appear that (8) characterizes the set R1,2. However, as will become apparent in the sequel, although

in the set R1,2 the inequality (8) holds, it also holds in subsets of R1 and R2: condition (8) does not characterize the set
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R1,2. We must properly characterize the state space regions R1, R2 and R1,2 in R3
1. The inequality (8) does not provide

the answer and it will be replaced by an alternative condition.

In this respect, consider the following. In Fig. 1 let the points E and P2 be fixed while point P1 is moved in a

clockwise direction, keeping the P1 − E distance d1 constant so that the Apollonius circles C1 and C2 will eventually

intersect, whereupon the inequality (8) will hold. The radius ρ1 of the Apollonius circle C1 is kept constant while it

is approaching the Apollonius circle C2 from the inside. The Apollonius circle C1 first meets the Apollonius circle

C2 tangentially and if the segment P1E rotates some more clockwise, the circles start intersecting. When this initially

happens, the point I in Fig. 1 is still in the interior of the disk formed by the Apollonius circle C2. Thus, although

the Apollonius circles intersect and condition (8) holds, E nevertheless flees toward point I with P1 in hot pursuit, as

if the configuration would have been as illustrated in Fig. 1 where the Apollonius circle C1 is in the interior of the

Apollonius disk formed by the Apollonius circle C2; it is only when point I on the extension of the segment EO1 meets

the Apollonius circle C2 and then exists the disk formed by the Apollonius circle C2, that both pursuers, P1 and P2

cooperatively and isochronously capture E in a pincer movement maneuver. Thus, although the Apollonius circles do

intersect, it nevertheless might be the case that neither one of their two points of intersection is the players’ aim point

I, and as before, only one of the pursuers is active while the Evader runs for his life from the active pursuer. The

BSR then has the shape of a thick lens and the Evader’s and the active pursuer’s aim point I is the point on the thick

lens-shaped BSR which is farthest away from E – it is on the circumference of the smaller Apollonius circle, on its

diameter that runs though E , while at the same time it is in the interior of the Apollonius disk formed by the bigger

Apollonius circle. The critical configuration where point I ∈ C2 is illustrated in Fig. 6.

Figure 6 Critical Configuration

Since, without loss of generality, we have assumed xE ≥ 0 and yE ≥ 0, our universe of discourse will be confined
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to the positive orthant of R3, R3
+.

Theorem 1. During optimal play the Evader is singlehandedly captured in PP by P1 if the state is in the set R1; the

set R1 is the wedge formed by the quarter planes {(xP, xE, yE ) | xP = 0, xE ≥ 0, yE ≥ 0} and {(xP, xE, yE ) | xE =

µxP, xP ≥ 0, yE ≥ 0}. The Evader is singlehandedly captured in PP by P2 if the state is in the set R2; the set R2 is the

mirror image of R1 about the plane xE = 0. The Evader is cooperatively and isochronously captured by P1 and P2 if

the state is in the set

R1,2 = {(xP, xE, yE ) | −µxP ≤ xE ≤ µxP, xP ≥ 0, yE ≥ 0} .

Proof. To obtain a correct algebraic characterization of the sets R1, R2 and R1,2 which will supersede condition (8),

proceed as follows. Calculate the (x, y) coordinates of the critical point I on the circumference of the Apollonius circle

C1 which is antipodal to E , as shown in Fig. 6 – see Fig. 7:

Figure 7 Point I

We have
xP − xI
xP − xE

=
ρ1 + EO1 + d1

d1
,

yI

yE
=
ρ1 + EO1 + d1

d1
,

where

EO1 =
µ2

1 − µ2 d1, ρ1 =
µ

1 − µ2 d1.

Hence,

xI =
1

1 − µ
(xE − µxP), yI =

1
1 − µ

yE . (9)

By construction, I ∈ C1 and I is the critical aim point if in addition I ∈ C2. To find the points of intersection (xI, yI )

11



of the circles C1 and C2 boils down to the solution of a quadratic equation:

xI = 0, yI =
yE +

√
µ2y2

E +
(
1 − µ2) (µ2x2

P − x2
E

)
1 − µ2 (10)

Combining (9) and (10) we obtain the result

xE = µxP,

and the solution of the Game of Kind is as stated in this Theorem.

The cones K1 and K2 and/or condition (8) have no role to play here. The Apollonius circles C1 and C2 intersect if

−µxP ≤ xE ≤ µxP .

Remark. Proposition 1 is a corollary of Theorem 1.

In summary, the reduced state space of the Two Cutters and Fugitive Ship differential game is the first quadrant of

R3, that is, R3
1 = {(xP, xE, yE ) | xP ≥ 0, yE ≥ 0}. The state space R3

1 is symmetric about the plane xE = 0; the region

R1 (and K1) reside in the positive orthant R3
+. Since point capture is desired, the terminal set in the R1 subset of the R3

+

state space is the straight line {(xP, xE, yE ) | xE = xP, xP ≥ 0, yE = 0} and the terminal set in the R1,2 subset of the

state space is the origin.

B. Game of Degree in Reduced State Space

1. Game in R1 and R2

In R1 the active pursuer P1 employs PP while the evader runs for his life. The actions of pursuer P2 do not affect

the outcome of the game and so, for exclusively illustrative purposes, we stipulate that P2 mirrors the control of P1.

This ensures that the (x, y) frame won’t rotate – it would just slide upward along the Y axis of the realistic plane, which

then coincides with the y-axis. The optimal trajectories in R1 are the family of straight lines

xP(t) = xP0 +
xE0 − xP0√

(xP0 − xE0 )2 + y2
E0

t,

xE (t) = xE0 + µ
xE0 − xP0√

(xP0 − xE0 )2 + y2
E0

t,

yE (t) = yE0 − (1 − µ)
yE0√

(xP0 − xE0 )2 + y2
E0

t .
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The state yE (t) is monotonically decreasing and when parameterized by yE , the optimal trajectories in R1 are the family

of straight lines

xP =
1

1 − µ

(
xP0 − xE0

yE0

yE + xE0 − µxP0

)
,

xE =
1

1 − µ

(
µ

xP0 − xE0

yE0

yE + xE0 − µxP0

)
.

These trajectories terminate in the plane yE = 0, on the straight line xP = xE . The optimal flow field in R1 consists of

the family of straight line trajectories from above, which terminate on the straight line {(xP, xE, yE ) | xE = xP, yE = 0}.

Similar considerations apply to R2 where the active pursuer is P2. The optimal flow field in R2 is a mirror image of the

optimal flow field in R1.

When xp = 0, P1 and P2 are collocated. The half plane {(xP, xE, yE ) | xP = 0, yE ≥ 0} ⊂ R1 ∪ R2.

2. Game in R1,2

If the state is in

R1,2 = {(xP, xE, yE ) | −µxP ≤ xE ≤ µxP, xP ≥ 0, yE ≥ 0} ,

E will be isochronously captured by the P1&P2 team. The players’ optimal headings are given in the next Theorem.

Theorem 2. The players’ optimal headings are constant in both the (x, y) and (X,Y ) frames and they are given by

sinψ∗ =

yE0 +

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

)
√(

1 − µ2) (x2
P0

− x2
E0

)
+
(
1 + µ2) y2

E0
+ 2yE0

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

) ,
cosψ∗ =

(
1 − µ2) xP0√(

1 − µ2) (x2
P0

− x2
E0

)
+
(
1 + µ2) y2

E0
+ 2yE0

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

) ,
χ∗ = π − ψ∗,

sin ϕ∗ =
1
µ

µ2yE0 +

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

)
√
(1 − µ2)

(
x2
P0

− x2
E0

)
+
(
1 + µ2) y2

E0
+ 2yE0

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

) ,
cos ϕ∗ = − 1

µ

(
1 − µ2) xE0√(

1 − µ2) (x2
P0

− x2
E0

)
+
(
1 + µ2) y2

E0
+ 2yE0

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

) .

(11)

The initial state (xP0, xE0, yE0 ) can momentarily be viewed as the current state and as such, Eqs. (11) are explicit

13



state feedback “optimal” strategies, as provided by the geometric method; the attendant Value function is given by

t f =
1

1 − µ2

√(
1 − µ2) (x2

P0
− x2

E0

)
+
(
1 + µ2) y2

E0
+ 2yE

√
µ2y2

E0
+
(
1 − µ2) (µ2x2

P0
− x2

E0

)
(12)

Proof. Since the △ P1P2I in Fig. 2 is isosceles, the aim point I = (0, y) is obtained upon setting x = 0 in (6) or (7),

which yields a quadratic equation in y. The discriminant of the quadratic equation is positive iff the Apollonius circles

C1 and C2 intersect, which is the case iff condition (8) holds and is certainly the case if µxP ≤ xE ≤ µxP , whereupon

y =
1

1 − µ2

[
yE + sign(yE )

√
µ2y2

E +
(
1 − µ2) (µ2x2

P − x2
E

) ]
,

where the function

sign(x) ≡



1 if x > 0,

0 if x = 0,

−1 if x < 0,

so

yI =
1

1 − µ2

[
yE + sign(yE )

√
µ2y2

E +
(
1 − µ2) (µ2x2

P − x2
E

) ]
. (13)

Using the geometric method, the players’ optimal state feedback strategies in R1,2 are explicitly given by

sinψ∗ =
yI√

x2
P + y2

I

, cosψ∗ =
xP√

x2
P + y2

I

, (14)

sin χ∗ =
yI√

x2
P + y2

I

, cos χ∗ = − xP√
x2
P + y2

I

, (15)

sin ϕ∗ =
yI − yE√

(yI − yE )2 + x2
E

, cos ϕ∗ = − xE√
(yI − yE )2 + x2

E

, (16)

and the time-to-capture/Value function is

V(xP, xE, yE ) =
√

x2
P + y2

I , (17)

where the function yI (xP, xE, yE ) is given by (13).
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When the initial state (xP0, xE0, yE0 ) ∈ R1,2 and P1, P2 and E play optimally, the closed loop dynamics are

ÛxP = GxP, xP(0) = xP0,

ÛxE = GxE, xE (0) = xE0,

ÛyE = GyE, yE (0) = yE0, 0 ≤ t,

(18)

where

G = −
(
1 − µ2)√(

1 − µ2) (x2
P − x2

E

)
+
(
1 + µ2) y2

E + 2yE
√
µ2y2

E +
(
1 − µ2) (µ2x2

P − x2
E

) .
The solution of the system (18) of strongly nonlinear differential equations is simply

xP(t) =
(
1 − t

t f

)
xP0,

xE (t) =
(
1 − t

t f

)
xE0,

yE (t) =
(
1 − t

t f

)
yE0, 0 ≤ t ≤ t f

(19)

where t f is given by (12). Inserting (19) into (14)–(16) we obtain the players’ constant headings in both the (x, y) and

(X,Y ) frames.

When the geometric method is applied and P1 and P2 play “optimally”, from (11) we deduce that in the (x, y)

frame the headings of P1 and P2 are mirror images of each other: χ∗ = π − ψ∗. Therefore, the (x, y) frame does not

rotate and the players’ headings are constant also in the (inertial) (X,Y ) frame of the realistic plane. Hence, in the

realistic plane, the “optimal” trajectories are straight lines. Since initially the rotating (x, y) frame is aligned with the

(X,Y ) frame of the realistic plane, the y-axis stays aligned with the Y -axis while the x-axis stays parallel to the X-axis

moving in the upward direction at a constant speed. Therefore the “optimal” trajectories are also straight lines in the

(x, y) frame. Thus, when the state feedback strategies (11) synthesized using the geometric method are applied, the

closed loop system’s “optimal” flow field in the R1,2 region of the reduced state space consists of the family of straight

line trajectories (19) which converge at the origin. Moreover, this flow field, which was produced by the geometric

method, covers the R1,2 region of the reduced state space – this, by construction.

The following extensions are of interest. The cutters’ speeds need not be equal. Furthermore, it is interesting to

consider the case where the speed of just one of the two cutters, say P1, is higher than the speed of the fugitive ship

while the speed of P2 is equal to the speed of the fugitive ship. In this case, upon employing the geometric method,

the Apollonius circle which is based on E and P2 devolves into the orthogonal bisector of the segment EP2. It makes

sense to also stipulate that the cutters P1 and P2 are endowed with circular capture sets with radii l1 > 0 and l2 > 0
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respectively. In this case the elegant Apollonius circles will be replaced by Cartesian ovals and the boundary separating

the R1, R2, and R1,2 regions of the state space won’t be planar and will be replaced by a more complex surface.

IV. Conclusion
In this paper Isaacs’ Two Cutters and Fugitive Ship differential game has been revisited. The solution of the Game

of Kind is provided, that is, the partition of the state space into regions where under optimal play just one of the

pursuers captures the evader, and the state space region where both pursuers cooperatively capture the target, has been

characterized. The closed form solution of the Game of Degree has been obtained using Isaacs’ geometric method.

Acknowledgments
This paper is based on work performed at the Air Force Institute of Technology and the Air Force Research

Laboratory (AFRL) Control Science Center of Excellence. Distribution Unlimited. Approved for public release. 29

August 2018. Case #88ABW-2018-4311.

References
[1] Steinhaus, H., and Kuhn, H. W., “Definitions for a theory of games and pursuit,” Naval Research Logistics Quarterly, Vol. 7,

1960, pp. 105–108. doi:10.1002/nav.3800070202.

[2] Isaacs, R., Differential Games: A Mathematical Theory with Applications to Optimization, Control and Warfare, Wiley, New

York, 1965. ISBN: 9780486406824.

[3] Breakwell, J. V., and Hagedorn, P., “Point capture of two evaders in succession,” Journal of Optimization Theory and

Applications, Vol. 27, 1979, pp. 89–97. doi:10.1007/BF00933327.

[4] Ganebny, S. A., Kumkov, S. S., Le Ménec, S., and Patsko, V. S., “Model Problem in a Line with Two Pursuers and One

Evader,” Dynamic Games and Applications, Vol. 2, 2012, pp. 228–257. doi:10.1007/s13235-012-0041-z.

[5] Makkapati, V. R., Sun, W., and Tsiotras, P., “Optimal Evading Strategies for Two-Pursuer/One-Evader Problems,” Journal of

Guidance, Control, and Dynamics, Vol. 41, 2018, pp. 851–862. doi:10.2514/1.G003070.

[6] Garcia, E., Fuchs, Z. E., Milutinović, D., Casbeer, D. W., and Pachter, M., “A Geometric Approach for the Cooperative

Two-Pursuer One-Evader Differential Game,” IFAC-PapersOnLine, Vol. 50, 2017, pp. 15209–15214. doi:10.1016/j.ifacol.

2017.08.2366.

[7] Fuchs, Z. E., Garcia, E., and Casbeer, D. W., “Two-Pursuer, One-Evader Pursuit Evasion Differential Game,” 2018 IEEE

National Aerospace and Electronics Conference (NAECON), IEEE, 2018, pp. 457–464. doi:10.1109/NAECON.2018.8556827.

[8] Von Moll, A., Casbeer, D. W., Garcia, E., and Milutinović, D., “Pursuit-evasion of an Evader by Multiple Pursuers,” 2018

International Conference on Unmanned Aircraft Systems (ICUAS), 2018, pp. 133–142. doi:10.1109/ICUAS.2018.8453470.

16



[9] Hagedorn, P., and Breakwell, J. V., “A differential game with two pursuers and one evader,” Journal of Optimization Theory

and Applications, Vol. 18, 1976, pp. 15–29. doi:10.1007/BF00933791.

[10] Ibragimov, G., and Hussin, N. A., “A pursuit-evasion differential game with many pursuers and one evader,” Malaysian Journal

of Mathematical Sciences, Vol. 4, No. 2, 2010, pp. 183–194.

[11] Levchenkov, A., and Pashkov, A., “A game of optimal pursuit of one non-inertial object by two inertial objects,” Journal of

Applied Mathematics and Mechanics, Vol. 49, No. 4, 1985, pp. 413 – 422. doi:10.1016/0021-8928(85)90045-0.

[12] Pashkov, A., and Terekhov, S., “On a game of optimal pursuit of an object by two others,” Journal of Applied Mathematics

and Mechanics, Vol. 47, 1983, pp. 720–724. doi:10.1016/0021-8928(83)90105-3.

[13] Le Ménec, S., Linear Differential Game with Two Pursuers and One Evader, Birkhäuser Boston, Boston, 2011, Chap. 11, pp.

209–226. doi:10.1007/978-0-8176-8089-3_11.

[14] Ibragimov, G. I., “A game of optimal pursuit of one object by several,” Journal of Applied Mathematics and Mechanics, Vol. 62,

1998, pp. 187–192. doi:10.1016/S0021-8928(98)00024-0.

[15] Ibragimov, G., Ferrara, M., Kuchkarov, A., and Pansera, B. A., “Simple Motion Evasion Differential Game of Many Pursuers

and Evaders with Integral Constraints,” Dynamic Games and Applications, Vol. 8, 2018, pp. 352–378. doi:10.1007/s13235-

017-0226-6.

[16] Von Moll, A., Casbeer, D., Garcia, E., Milutinović, D., and Pachter, M., “The Multi-Pursuer Single-Evader Game: A

Geometric Approach,” Jounal of Intelligent and Robotic Systems, 2019. doi:10.1007/s10846-018-0963-9.

17


	Introduction
	The Geometric Method
	Isaacs' Geometric Solution

	Geometric Solution in Reduced State Space
	Game of Kind in Reduced State Space
	Game of Degree in Reduced State Space
	Game in R1 and R2
	Game in R12


	Conclusion

