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Circular Target Defense Differential Games∗

Alexander Von Moll1,2, Meir Pachter3, Daigo Shishika4, and Zachariah Fuchs2

Abstract—In this paper, the problem of guarding a circular
target wherein the Defender(s) is constrained to move along its
perimeter is posed and solved using a differential game theoretic
approach. Both the one-Defender and two-Defender scenarios
are analyzed and solved. The mobile Attacker seeks to reach the
perimeter of the circular target, whereas the Defender(s) seeks
to align itself with the Attacker, thereby ending the game. In the
former case, the Attacker wins, and the Attacker and Defender
play a zero-sum differential game where the payoff/cost is the
terminal angular separation. In the latter case, the Defender(s)
wins, and the Attacker and Defender play a zero-sum differential
game where the cost/payoff is the Attacker’s terminal distance
to the target. This formulation is representative of a scenario in
which the Attacker inflicts damage on the target as a function of
its terminal distance. The state-feedback equilibrium strategies
and Value functions for the Attacker-win and Defender(s)-win
scenarios are derived for both the one- and two-Defender cases,
thus providing a solution to the Game of Degree. Analytic
expressions for the separating surfaces between the various
terminal scenarios are derived, thus providing a solution to the
Game of Kind. An alternative game is formulated and solved in
the case of Attacker win wherein the Attacker seeks to minimize
time to reach the target.

Index Terms—Differential games, optimal control, differential
equations

I. INTRODUCTION

THE problem of guarding a target has many important
applications in real-world defense scenarios. One ex-

ample is protection of a building’s perimeter from mobile
infiltrators, which may be considered to be people, ground
vehicles, air vehicles, or even certain types of munitions. Isaacs
considered such a target guarding problem in his seminal work
on differential game theory [1, see Example 1.9.2]. There, the
static target was a convex area. Recently, there has been an
interest in the defense of a mobile target, usually represented
by a point or disk (e.g. [2]).

We pose and analyze the target guarding problem wherein
the Defender (D) is constrained to move along the (static)
circular target perimeter and the mobile Attacker (A) moves
with simple motion. This problem is an instance of the
perimeter defense problem presented in [3]–[5]; these works
establish strategies for individual agents as well as teams of
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Attackers and Defenders for targets of arbitrary convex shape.
One significant difference in the formulation presented here is
that we consider the game to terminate when either A reaches
the target (A wins), or D becomes aligned with A (D wins).
The latter scenario may be thought of as the Defender being
able to neutralize the Attacker (at a distance) with a highly
directional weapon.

Because the perimeter is a circle and the Defender is
constrained to move along the circle, this problem has a strong
connection to the Lady in the Lake (or swimmer and bear;
c.f. [6]) differential game wherein the pursuer runs along the
shoreline of a lake (the circle) to try and catch the evader who
must swim to the shore from inside the lake to escape [7]–
[9]. Here, however, we are essentially analyzing the Lady
Outside the Lake game with the agents’ roles reversed. The
cost functional, in the case that the Attacker can reach the
perimeter, is identical to the Lady in the Lake game. Note
that a similar Defender model is used in [10] (i.e., where
the Defender(s) is (are) constrained to move along a circle),
however, there, the Attacker initially begins inside the circle
and seeks to escape. The overall solution approach is also
similar – we utilize a classical differential game approach [1],
[9] to obtain the Value function, equilibrium strategies and
Game of Kind (or barrier) surface [10].

In general, target guarding may be thought of a special case
of reach-avoid games wherein one player seeks to reach a goal
configuration while avoiding some undesirable configuration
(such as capture). Much work has been done on reach-avoid
games ranging from numerical computation of the reachable
sets for each player to extensions to teams of players via
decomposition [11]–[13]. This work is most closely related to
some recent works which build up the solution to two-on-one
scenarios using a rigorous differential game formulation with
the one-on-one solution as a basis. For example, [14] derives
the analytical barrier between Attacker and Defenders winning
for a reach-avoid game which takes place inside a rectangular
domain. A similar result has been obtained for a blocking
game where two Defenders seek to prevent an Attacker from
reaching a line segment [15]. Finally, several recent works
have analyzed reach-avoid games inside a circular domain
but with freely moving Defenders [16], [17]. The utility of
these rigorous analytical results have been highlighted in task
allocation schemes which are capable of handling teams of
many agents [18].

This paper contains the following contributions: (i) the one-
on-one Attacker-win and Defender-win scenarios are formu-
lated and solved rigorously using a differential game theoretic
approach, verifying the saddle-point equilibrium status of
strategies existing in the literature [3]; (ii) analytic expres-
sions for the Value functions are derived for both one-on-one
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scenarios; (iii) the two-Defender, one-Attacker scenarios are
formulated and the equilibrium strategies and Value functions
are derived; (iv) the entire state space is partitioned based on
all of the different terminal scenarios, and analytic expressions
for the separating surfaces are derived; (v) an alternative
scenario in which the Attacker seeks to reach the target in
minimum time is solved. The emphasis is on the analysis and
proof methods, which are based on differential game theory,
in comparison to the geometric methods used previously [3].
Sections II and III cover the one- and two-Defender cases,
respectively. In each of those sections, both the Attacker-win
and Defender(s)-win scenarios are formulated and solved. This
work is an extension of [19], which includes expanded proofs
and analysis of the problem of minimum time penetration
(Sections II-D and III-D). Section IV concludes the work.

II. ONE DEFENDER

This section formulates the target guarding problem wherein
the Defender (D) is constrained to move along the circular
target perimeter and the Attacker (A) moves in the plane
with simple motion. Figure 1 shows the local coordinate
system (black) used in much of the analysis to appear, as well
as the global (inertial) (x, y)-coordinate system (green). The
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Fig. 1. Circular perimeter patrol with one Defender and one Attacker.

following assumptions are made on the problem setup:

Assumption 1. The players’ speeds are such that 0 < vA ≤ vD,
where vA and vD are the speeds of the Attacker and Defender,
respectively.

Assumption 2. The initial separation angle is such that θ(t0) =
θ0 ∈ [0, π).

Assumption 3. The initial Attacker distance is such that
R(t0) > 1 – that is, A begins outside the target circle.

Assumption 2 will be lifted after the equilibrium strategies
have been derived and the symmetry (and attendant singular-
ity) identified. The (dimensional) kinematics, based on Fig. 1
are

f̄ (x̄, ū, t̄) = ˙̄x =

 ˙̄R
˙̄θ
˙̄β

 =

 −vA cosψ
vA
R̄

sinψ − vD
l

vD
l

 , (1)

where θ̄ ∈ [−π, π] is the angle of A’s position w.r.t. D and β ∈
[0, 2π] represents the rotation of D about the circle’s center
w.r.t. a global (x, y)-plane. With the following definitions,

R ≡ R̄

l
, t ≡ vDmax

l
t̄, uD ≡

vD
vDmax

, ν =
vA

vDmax

,

where vDmax
is the maximum Defender speed and the

speed ratio 0 < ν ≤ 1, the kinematics in (1) are non-
dimensionalized:

f (x, u, t) = ẋ =

Ṙθ̇
β̇

 =

 −ν cosψ
ν 1
R sinψ − uD

uD

 . (2)

The Defender control lies in the range uD ∈ [−1, 1], and the
Attacker control lies in the range ψ ∈ [−π, π]. Note θ and
θ̄ are equivalent, but their time derivatives differ due to the
scaling of time.

We define the Game of Kind as the question of whether
Attacker can reach the perimeter (R → 1) with non-zero
terminal separation angle (Attacker ‘wins’) or the Defender
can drive θ → 0 before the Attacker reaches the perimeter
(Defender ‘wins’). The subscript f refers to conditions at
termination (e.g., tf is the terminal time). In the following
sections, the surface separating these two cases is derived and
a Game of Degree is specified and solved for each case.

Note that if vA > vD, the Attacker need only come within
some distance l < R̄ < l vAvD wherein the Attacker has the
control authority to force θ → π. Similarly, when vA ≤ vD,
if at some point θ = 0 the game is over because the Defender
has sufficient control authority to keep θ = 0 regardless of the
Attacker’s control. We assume that if θf = 0 the Defender
has successfully intercepted the Attacker and thwarted its
attack. We refer to the question of whether the Attacker wins
(i.e. θf > 0) or the Defender wins (θf = 0) as the Game of
Kind.

A. Defender Win Scenario

In this section we are concerned with the Game of Degree
which takes place when D is able to drive θ → 0 before A can
reach the target. Here, the initial condition of the system lies
in the region RD, which is the region of win for the Defender
(see (28)). In this case, it is sensible for the agents to play a
zero-sum game over the cost functional

Jd = Φd (xf , tf ) = −Rf , (3)

where the subscript f denotes conditions at termination. The
negative sign in (3) is present so that the Defender is the
minimizing player and the Attacker is the maximizing player.
That is, the Attacker seeks to get as close as possible to Rf =
1 and the Defender seeks to maximize the terminal distance.
We refer to this game as the Game of Distance, and denote
it with subscript d, in general. The Value of the game, if it
exists, is the saddle-point equilibrium of the cost functional
over state-feedback strategies

Vd = min
uD(·)

max
ψ(·)

Jd = max
ψ(·)

min
uD(·)

Jd. (4)
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The terminal constraint for the Game of Distance is

φd (xf , tf ) = θf = 0. (5)

The final time, tf , is the first time for which θ(t) = 0.
Thus, the Terminal Surface is defined as the set of states
satisfying (5)

Td = {x | R > 1 and θ = 0} . (6)

Assumptions 1 and 2 are retained for this analysis.
1) First Order Necessary Conditions for Optimality: We

carry out the analysis according to a classical differential game
approach [1] [9, c.f., Ch. 8, Thm 2, and §8.5]. The kinematics
remain unchanged from the previous analysis; the Hamiltonian
for the Game of Distance is

Hd = −σRν cosψ + σθ

(
ν

1

R
sinψ − uD

)
+ σβuD, (7)

where σ ≡
[
σR σθ σβ

]>
is the adjoint vector for the Game

of Distance. The Hamiltonian is a separable function of the
controls uD and ψ, and thus Isaacs’ condition [1], [9] holds:

min
uD

max
ψ

Hd = max
ψ

min
uD

Hd, ∀x,

where uD ∈ [−1, 1] and ψ ∈ [−π, π]. The equilibrium adjoint
dynamics are given by

σ̇R = −∂Hd

∂R
= νσθ

1

R2
sinψ, (8)

σ̇θ = −∂Hd

∂θ
= 0, (9)

σ̇β = −∂Hd

∂β
= 0. (10)

The terminal adjoint values are obtained from the transversal-
ity condition [20, pg. 89]

σ>(tf ) =
∂Φd
∂xf

+ η
∂φd
∂xf

=
[
−1 0 0

]
+ η

[
0 1 0

]
=⇒

σRf = −1

σθf = η

σβf = 0,

(11)

where η is an additional adjoint variable whose value will be
determined later in the analysis. Therefore, with (9)–(11), the
following hold

σθ(t) = η, ∀t ∈ [t0, tf ] (12)
σβ(t) = 0, ∀t ∈ [t0, tf ] . (13)

Once again, since σβ(t) = 0 for all t ∈ [t0, tf ], the state
component β has no effect on the equilibrium trajectory or
the equilibrium control strategies. The terminal Hamiltonian
satisfies [20]

Hd(tf ) = −∂Φd
∂tf
− η ∂φd

∂tf
= 0, (14)

and dHd

dt = 0, so Hd(t) = 0 for all t ∈ [t0, tf ].
The equilibrium control actions of the Attacker and De-

fender maximize and minimize (7), respectively: H ∗
d =

maxψ minuD Hd. In order to maximize (7) (with (12)), the
vector

[
cosψ sinψ

]
must be parallel to the vector

[
σR

η
R

]
,

giving

cosψ∗ =
−σR√
σ2
R + η2

R2

, sinψ∗ =
η

R
√
σ2
R + η2

R2

. (15)

If η < 0, this implies sinψ∗ < 0 due to (15). However, this
would mean the Attacker has a component of its motion that
points towards the Defender due to Assumption 2 (see, e.g.,
Fig. 1). Thus, it must be the case that η > 0. In order to
minimize (7) (with (12)), the Defender’s control must satisfy

u∗D = sign η = 1, (16)

since η > 0.
Substituting the equilibrium controls, (15) and (16), into

the Hamiltonian, (7), and evaluating at final time with (11)
and (14) gives

H ∗
d (tf ) = 0 =

νσ2
Rf√

σ2
Rf

+ η2

R2
f

+
νη2

R2
f

√
σ2
Rf

+ η2

R2
f

− η

=⇒ η = ±νRf

√
1

R2
f − ν2

.

Since η > 0, we have

η = νRf

√
1

R2
f − ν2

. (17)

2) Solution Characteristics: An expression for σR is ob-
tained by considering the Hamiltonian at a general time,
making the same substitutions as before, with the additional
substitution of (17):

H ∗
d (t) = 0 = ν

√
σ2
R +

η2

R2
− η

=⇒ σR = ±
√
η2

ν2
− η2

R2

= ±Rf
R

√
R2 − ν2

R2
f − ν2

.

Since σRf < 0 (due to (11)) and σ̇R > 0 (due to (8) with (15)
and η > 0) it must be that σR(t) < 0 for all t ∈ [t0, tf ], thus

σR = −Rf
R

√
R2 − ν2

R2
f − ν2

. (18)

The retrograde equilibrium kinematics (denoted by x̊∗,
where x̊∗ = −ẋ∗) can be obtained by substituting the
equilibrium controls, (15) and (16), along with the adjoints,
(12), (13), and (18), into (2) which yields

R̊∗ = ν

√
1− ν2

R2
, θ̊∗ = 1− ν2

R2
, (19)

with the following boundary conditions

R(tf ) > 1, θ(tf ) = 0. (20)
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Note that both R̊ and θ̊ are monotonically increasing ac-
cording to (19). Consider the differential equation obtained
by dividing the equations in (19)

dR

dθ
=

ν√
1− ν2

R2

=⇒ ν

[√
R2

ν2
− 1 + sin−1

( ν
R

)]R
Rf

= ν (θ − θf ) .

Define

g(R) =

√
R2

ν2
− 1 + sin−1

( ν
R

)
, (21)

=⇒ ν (g(R)− g(Rf )) = ν (θ − θf )

=⇒ θ (R;Rf , θf ) = g(R)− g(Rf ) + θf , θf ≤ θ < π.
(22)

Setting θf = 0 in (22) (i.e., θ(R;Rf , 0)) describes the
equilibrium flow field for the Game of Distance (i.e., assuming
the Defender can drive θ → 0 before the Attacker can reach
the target). The curve in (22) is the involute of a circle of
radius ν.

Up until now, we have considered θ to be in the range
[0, π), however, the results apply to the range (−π, 0] with
some slight modification.

Lemma 1. The surface

D ≡ {x | θ = π} , (23)

is a Dispersal Surface (c.f. [1]) wherein the Defender can
choose either uD = 1 or uD = −1 and both choices are
optimal. Furthermore, when θ < 0, the equilibrium controls
are given by u∗D = −1 and sinψ∗ < 0.

Proof. By definition, points on a Dispersal Surface have two
or more associated equilibrium trajectories which yield the
same Value. We will show that (23) is indeed a Dispersal
Surface by constructing a pair of equilibrium trajectories that
integrate back to the same point on D . Consider an initial
state on the Dispersal Surface, xD = (R0, π) ∈ D . The
system (19) describes the evolution of R and θ in backwards
time assuming η > 0. Now, let xf ≡ (Rf , θf ) (where Rf > 1,
θf ≥ 0) be the terminal state, which, when integrated through
the retrograde kinematics (19), yields the initial point xD . A
symmetric solution can be constructed by switching the sign
of η and θf , then integrating the retrograde kinematics back
to xD . Now, let η < 0; then sinψ∗ < 0 from (15), and
u∗D = −1 from (16). Substitution into the Hamiltonian at final
time yields η = −νRf

√
1

R2
f−ν2 . Substituting all of these into

the Hamiltonian at general time yields the same expression for
σR as in (18). Then, from (2), the retrograde kinematics are

R̊ = ν

√
1− ν2

R2
, θ̊ =

ν2

R2
− 1.

Clearly, these are the same kinematics as in (19) except the
sign of θ̊ is reversed. These kinematics can be integrated back
from the symmetric terminal point (Rf ,−θf ) to the point
(R0,−π), which is equivalent to xD . This pair of trajectories

emanating (forward in time) from xD have the same Value for
all terminal cost functionals of Rf and |θf |. Note this method
for proving the presence of a Dispersal Surface is similar to
the one used for a problem with similar dynamics in [21].

As a consequence, Assumption 2 may be relaxed, and the
state space may be expanded to θ ∈ [−π, π].
Theorem 1 (Game of Distance Solution). The equilibrium state
feedback control strategies for the Game of Distance are given
by

ψ∗ = sign (θ) sin−1
( ν
R

)
, u∗D = sign (θ) . (24)

The Value of the game is

Vd(R, θ) = −Rf = −g−1 (g(R)− |θ|) . (25)

Proof. The expression for ψ∗ is obtained by substituting (17)
and (18) into (15), taking into account the sign of θ (due to
Lemma 1). Similarly, the Defender strategy is given by (16),
accounting for Lemma 1. The corresponding form of (22) for
the Game of Distance is

θ (R;Rf ) = g(R)− g(Rf ). (26)

Thus, (25) is obtained by rearranging this expression and
solving for Rf , with g(·) defined as in (21). Because Vd is
defined using the inverse of the function g, it is necessary to
show that g(R) is monotonic. Taking the derivative of (21)
w.r.t. R gives

dg

dR
=

√
R2 − ν2

νR
.

From Assumption 1, it must be that 0 < ν < 1, and from
Assumption 3 it must be that R > 1 throughout the game. So
we have R > ν and R, ν > 0, which implies that g(R) is
monotonic.

The Value function does not have a closed form analytic
expression since g−1 cannot be expressed in closed form.

The limiting case for the Game of Distance is one in which
Rf → 1; thus the surface

θGoK (R) = g(R)− g(1) (27)

partitions the state space into regions of win for the Defender
and Attacker, respectively,

RD = {x | |θ| ≤ θGoK(R)} (28)
RA = {x | |θ| > θGoK(R)} . (29)

Note that the value domain of g(R) is [g(1),∞) since R ≥ 1
and g is monotonic; from (28) |θ| ≤ θGoK(R) in RD,
so the argument to g−1 in (25) is g(R) − |θ| ≥ g(R) −
(g(R)− g(1)) = g(1) which is in the value domain of g(R).

B. Attacker Win Scenario

In the region of the state space in which the Attacker ‘wins’
(i.e., can reach R = 1 while avoiding θ = 0), we consider a
Game of Degree wherein the players max/min the terminal
separation angle; we refer to this as the Game of Angle. The
cost/payoff functional is given as

J = Φ (xf , tf ) = θf . (30)
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The Attacker seeks to maximize the terminal separation angle
whereas the Defender seeks to minimize. Termination occurs
when the Attacker penetrates the target circle,

φ (xf , tf ) = Rf − 1 = 0. (31)

Theorem 2 (Game of Angle Solution). The equilibrium state
feedback strategies for the Game of Angle match those of the
Game of Distance, i.e., are given by (24). The Value function
is given by

V (R, θ) = θf = θ − g (R) + g (1) . (32)

Proof. This proof is based upon showing satisfaction of the
sufficient condition for equilibrium via substitution of the
proposed equilibrium strategies and Value function into the
Hamilton-Jacobi-Isaacs (HJI) equation [1],

min
uD

max
ψ

{
l (x, uD, ψ, t) +

∂V

∂t
+ Vx · f (x, uD, ψ, t)

}
= 0,

(33)

where Vx is the vector
[
∂V
∂R

∂V
∂θ

∂V
∂β

]>
, and l represents

an integral cost component. First, note that the cost, (30), has
no integral component, and thus l = 0. Also, the proposed
Value function, (32) is not an explicit function of time and
thus ∂V

∂t = 0. The vector Vx is obtained by differentiating (32)
w.r.t. each state,

Vx =
[
−
√
R2−ν2

Rν 1 0
]
.

The (forward) equilibrium dynamics, f , are given by the
negative of (19). Substituting all of these expressions into (33)
gives

∂V

∂R
Ṙ+

∂V

∂θ
θ̇ =(

−
√
R2 − ν2

Rν

)(
−ν
√

1− ν2

R2

)
+

(
ν2

R2
− 1

)
= 0.

The proposed Value function is continuous and continuously
differentiable (except on the Dispersal Surface, D), and it
satisfies the HJI hyperbolic PDE.

Remark 1. Theorem 1 (as well as Theorems 3 and 4) can be
verified in a similar fashion (i.e., by substituting the respective
Value functions into the HJI to show it is satisfied). The
analysis would be nearly identical to the above proof and is
therefore omitted.

C. Full Equilibrium Flow Field

With the analysis in Sections II-A and II-B, the entire
(usable) state space can be filled with equilibrium trajectories.
Figure 2 shows (22) and (26) in the Attacker win and lose
regions, respectively.

Lemma 2. The Attacker’s equilibrium trajectory is a straight
line in the inertial (non-rotating) (x, y)-plane.

1.0 1.5 2.0 2.5 3.0 3.5
R

0

π

4

π

2

3π

4

π

θ

RA

RD

GoA Trajectories
GoD Trajectories
GoK Surface
Terminal Surface
Dispersal Surface

Fig. 2. Full equilibrium flow field with ν = 0.8

Proof. Consider Fig. 1 which shows the Attacker’s heading
angle, ψ̃, w.r.t. the inertial (x, y)-plane. The following relation
holds

ψ̃ = β + θ + π − ψ

Thus, the time derivative of the global Attacker heading angle
is given as

˙̃
ψ = β̇ + θ̇ − ψ̇

Substituting (24) and (19) into the above gives

˙̃
ψ = 1 +

ν2

R2
− 1− ∂

∂t
sin−1

( ν
R

)
=
ν2

R2
−

 −1√
1− ν2

R2

( ν

R2

)
Ṙ

=
ν2

R2
+

 1√
1− ν2

R2

( ν

R2

)(
−ν
√

1− ν2

R2

)
= 0.

Because ˙̃
ψ = 0, the global Attacker heading angle is constant,

and thus the Attacker’s path is a straight-line in the inertial
(x, y)-plane.

D. Alternative Attacker Win Scenario

Depending on the particular physical application or inter-
pretation of the scenario, the Attacker may be interested in
penetrating the target circle in minimum time. For example,
if the Attacker is a munition of some kind, it may not matter
how far or close the Defender is at the time of penetration.
Formulating a game of min /max terminal angular separation,
on the other hand, may make sense when the Attacker is some
kind of vehicle or person who seeks to intrude inside the target
circle while avoiding, as much as possible, coming into contact
with the Defender.

The cost functional considered here is

J = Φ (xf , tf ) = −tf . (34)

Once again, the negative sign is used to adhere to the conven-
tion established in previous sections in which the Attacker and
Defender are the maximizer and minimizer, respectively. Since
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penetration is assumed to occur, the termination condition is
given by (31), i.e., when the Attacker reaches the target, and
it must be ensured that θ(t) 6= 0 en route. We refer to this
scenario as the Game of Min Time.

Proposition 1. For the zero-sum differential game whose cost
is given by (34), the Defender’s equilibrium control is

u∗D = sign (θ) . (35)

Proof. First, note the proposed Defender control is the same
as in both of the Games of Degree considered previously
(c.f. Theorems 1 and 2). The Defender’s essential goal in all
of these scenarios is to align with the Attacker, if possible,
or otherwise impede the Attacker somehow. Likewise, the
Attacker must avoid alignment with the Defender in order to
achieve its objectives. Thus the Defender is always interested
in driving θ → 0 as quickly as possible. From (2), the fastest
way to achieve this is traversing, at maximum speed, in the
direction of the Attacker, i.e., by implementing (35).

Lemma 3. For any scenario in which the Defender implements
uD = sign (θ), it is necessary for x ∈ RA for all t ∈ [0, tf ]
in order for the Attacker to achieve penetration, i.e., Rf = 1
with θ > 0 for all t ∈ [0, tf ].

Proof. This Defender control is the equilibrium control for the
Game of Distance. In the Game of Distance, which is played
when x /∈ RA, the Attacker seeks to come as close to the
target circle before alignment with the Defender occurs. The
limiting case is when the Attacker reaches the target circle
at the exact moment alignment occurs. If it had gotten there
sooner, then it must have been the case that x ∈ RA since the
equilibrium controls are the same as in the Game of Angle.
In general, Rf > 1, which means that the Defender achieves
alignment before the Attacker achieves penetration under the
best possible Attacker control.

Lemma 3 expresses the necessary condition for the Attacker
to penetrate the target circle, which is applicable to any sce-
nario in which the Defender seeks to align with the Attacker.
Thus the Game of Min Time takes place in RA. Let us focus
on the case where θ ∈ [0, π]. The terminal condition is

φ (xf , tf ) = Rf − 1 = 0, θ ∈ [0, π] . (36)

Thus the terminal surface is the zero-level set of φ and is
left-discontinuous at θ = 0. Additionally, the boundary of the
terminal surface, (R, θ) = (1, 0), lies on the boundary of the
state space, ∂RA.

The Hamiltonian is

H = −λRν cosψ + λθ

( ν
R

sinψ − 1
)

+ λβ , (37)

where λ ≡
[
λR λθ λβ

]
. Both λθ and λβ are constant

since ∂H
∂θ = 0 and ∂H

∂β = 0, respectively. In general, the
transversality condition [20] is

λ> (tf ) =
∂Φ

∂xf
+ µ

∂φ

∂xf
. (38)

The term ∂φ
∂θ is well-defined when θ ∈ (0, π), but it is

undefined at the “corner point” (R, θ) = (1, 0). We first treat
the former case.

E. General Case

Lemma 4. For the zero-sum differential game whose cost is
given by (34), the equilibrium Attacker control is

ψ∗ = 0, ∀x s.t. θ >
R− 1

ν
. (39)

Proof. Specializing (38) gives

λ>(tf ) = 0 + µ
[
1 0 0

]
, (40)

thus λθ, λβ = 0 for all t ∈ [0, tf ]. Note that we have assumed
that θf > 0 which implies that ∂φ

∂θf
exists and equals 0.

Substituting into the Hamiltonian, (37), gives

H = −λRν cosψ,

which is maximized for cosψ∗ = − sign(λR) = ±1. It is
obvious that the Attacker must run toward the target circle,
hence (39) holds.

Now, we must ensure that the assumption θf > 0 is valid.
Under the equilibrium control strategies u∗D = sign(θ) and
ψ∗ = 0 the R and θ dynamics are

Ṙ = −ν, θ̇ = −1, (41)

and thus d θ
dR = 1

ν , implying that the trajectories are straight
lines in the (R, θ) plane. Furthermore, the unconstrained
equilibrium flowfield is

θ(R) =
1

ν
(R−R0) + θ0. (42)

The critical case occurs when the constraint activates at the
precise moment that the Attacker reaches the target (i.e., θf =
0). The time to traverse from their initial positions must be
equal, giving

θc(R) =
R− 1

ν
. (43)

If θ > θc, then θf > 0 under equilibrium play, hence the
specification in (39).

However, if θ < θc and the Attacker aims at the circle
center, the Defender can drive θ → 0 before the Attacker
reaches the target.

F. Corner Case

Now we treat the case wherein the game terminates on
“corner point” (R, θ) = (1, 0). Recall the fact that ∂φ

∂θf
is

undefined when θf = 0 which results in λθf being free. The
consequence is that the incoming equilibrium trajectory to the
corner point is not unique, unlike elsewhere in the terminal
surface. Therefore, a family of trajectories, beginning from a
range of initial conditions all terminate at (R, θ) = (1, 0).
A similar situation arises in pursuit-evasion scenarios with a
finite capture radius [22]–[24] For notational convenience, let
λRf ≡ µ and λθf ≡ η; λβf = 0, as before.
Lemma 5. For the zero-sum differential game whose cost is
given by (34) the equilibrium Attacker control is

ψ∗ = sin−1
( κ
R

)
, κ ∈ [0, ν] ,

∀x ∈ RA s.t. θ ≤ R− 1

ν
,

(44)
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where κ satisfies

0 =
1

ν

(√
R2 − κ2 −

√
1− κ2

)
−θ− sin−1 κ+sin−1

( κ
R

)
.

(45)
The Attacker trajectory is a straight line terminating at
(R, θ) = (1, 0).

Proof. The Hamiltonian, (37), evaluated at final time is

Hf = −µν cosψf + η (ν sinψf − 1) . (46)

The equilibrium Attacker heading must maximize Hf , thus

cosψ∗f =
−µ√
µ2 + η2

, sinψ∗f =
η√

µ2 + η2
. (47)

Substituting this terminal Attacker heading back into (46)
gives

Hf = ν
√
µ2 + η2 − η. (48)

The terminal Hamiltonian value is also specified by [20]

Hf = − ∂Φ

∂tf
− µ ∂φ

∂tf
= − (−1)− 0 = 1 (49)

Substituting back into (48) and rearranging gives

sinψ∗f =
νη

1 + η
. (50)

Define, for convenience, κ ≡ sinψf . The value of κ is
bounded,

κ ∈ [0, ν] . (51)

The lower bound is due to the fact that A ought not aim
towards D; the upper bound is due to the fact that κ > ν
would immediately push the state of the system out of RA.

Because the system is time-autonomous, the value of the
Hamiltonian is constant, i.e., H (t) = 1 for all t ∈ [0, tf ].
Rewriting (46) and (47) at general time and solving for λ2

R

gives

λ2
R =

(
1 + η

ν

)2

− η2

R2
. (52)

Similarly, the Attacker heading at general time is

sinψ =
η

R
√
λ2
R + η2

R2

=
νη

R (1 + η)
=

sinψf
R

=
κ

R
(53)

Therefore, Lemma 2 holds here as well since κ is a constant;
that is, the Attacker’s path is a straight line in the non-rotating
(x, y)-frame.

Concerning the determination of κ for a general position
R > 1 and θ ∈ [θGoK , θc], we turn to geometry. Let the point
I be the point on the target circle in which A will terminate;
by construction, this must be the point D terminates as well.
A right triangle is formed by 4ATO where T is the tangent
point of the extension of A’s trajectory on a circle of radius κ,
and O is the target circle’s center. The hypotenuse of4ATO is
R. Another right triangle is formed by 4ITO; its hypotenuse

is 1. See Fig. 3 for a representation of the geometry. The
distance traveled by the Attacker is

AI = AT − TI

=
√
R2 − κ2 −

√
1− κ2.

(54)

The Defender must cover an angular distance θ as well as the
circular sector between A and I . Define ρ ≡ ∠AOI , which is
given by

ρ = sin−1 κ− sin−1
( κ
R

)
. (55)

Define m as the difference in Attacker and Defender travel
times to the point I:

m (κ) =
1

ν
AI − (θ + ρ) . (56)

Then (45) is obtained by substituting in (54) and (55) and
setting equal to zero, which represents simultaneous arrival
to the point I . The value of κ for which this occurs may be
obtained numerically.

D

1
R

A

θ
κ

T

I

O

ρ

ν

Fig. 3. Schematic of the Game of Min Time scenario in which A takes an
“evasive” path in order to arrive at the point I simultaneously with D.

In the Game of Min Time nothing is gained by increasing
θf ; the Attacker either heads directly towards the Target
without regard for the Defender or performs the minimum
“evasion” necessary to reach the Target, whereupon θf = 0.
The equilibrium kinematics may obtained by substituting (44)
into (2). A closed form expression of the equilibrium trajectory
through the (R, θ) space is obtained via a process similar to
(19)–(22) in Section II-A2:

θ(R;κ) =

√
R2 − κ2

ν
+ sin−1 κ

R
−
√

1− κ2

ν
− sin−1 κ (57)

The full solution of the Game of Min Time is depicted in Fig. 4.

III. TWO DEFENDERS

In this section, we consider the circular target guarding
game with two Defenders, D1 and D2, with the following
assumption:
Assumption 4. The two Defenders share the same maximum
speed: vD1max

= vD2max
= vDmax

.
The scenario is depicted in Fig. 5, and the (nondimensional)

kinematics of the system are given as

f (x,u, t) = ẋ =


Ṙ
γ̇
α̇

β̇

 =


−ν cosψ

ν
R sinψ − 1

2 (uD1
+ uD2

)
1
2 (uD1

− uD2
)

uD1

 .
(58)
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1.0 1.5 2.0 2.5 3.0 3.5
R

0

π

4

π

2

3π

4

π
θ

RA

RD

direct
GoK Surface
θc

evasive
Terminal Surface
Dispersal Surface

Fig. 4. Equilibrium flowfield for the Game of Min Time with ν = 0.8. The
“direct” trajectories are straight lines with slope 1

ν
. The “evasive” trajectories

are described by (57) with various κ. The dashed black line is the critical
trajectory described by (43).

x

y

β
D1

l

vD1

D2
vD2

α

R̄

×I

vA
ψ̃

A
ψ

γ

Fig. 5. Circular perimeter patrol with two Defenders and one Attacker.

The angle α is measured from D2 to the angular bisector (on
the side of A) of the positions of D1 and D2. Similarly, the
angle γ is measured as A’s angular offset w.r.t. this bisector.

Assumption 5. The relative angular position of the Attacker is
bounded such that −α ≤ γ ≤ α.

Although we impose Assumption 5, it is of little conse-
quence since the forthcoming solution would still apply for γ
outside this range by, for example, switching the designation
of D1 and D2. Just as in the analysis of the one-on-one game,
there are three “games” or questions of interest: 1) can the
Attacker reach the target (the Game of Kind), 2) what is the
equilibrium terminal angular separation between the Attacker
and the closest Defender (the Game of Angle), and 3) what is
the equilibrium terminal distance from the target center (the
Game of Distance).

Note that the rotation of the system w.r.t. the global x-axis,
β, has no effect on the optimality of the trajectories as in the
one-on-one analysis and is therefore omitted in the following.

A. Game of Degree When Attacker Wins

Here, we consider the Game of Angle which applies to the
scenario when the Attacker is able to reach the target (Rf =
1). The cost functional is given as

J = Φ (xf , tf ) = αf − |γf |, (59)

and we seek the Value of the game:

V (x) = min
u(·)

max
ψ(·)

J = max
ψ(·)

min
u(·)

J. (60)

This game terminates when the following condition is satisfied

φ (xf , tf ) = Rf − 1 = 0. (61)

1) First Order Necessary Conditions for Optimality: First,
form the Hamiltonian as

H = −λRν cosψ + λγ

(
ν

R
sinψ − 1

2
(uD1

+ uD2
)

)
+λα

1

2
(uD1

− uD2
) .

(62)

The equilibrium adjoint dynamics obey [20]

λ̇R = −∂H

∂R
= λγ

ν

R2
sinψ, (63)

λ̇γ = −∂H

∂γ
= 0, (64)

λ̇α = −∂H

∂α
= 0. (65)

From the transversality condition [20], the equilibrium termi-
nal adjoint values satisfy

λ>(tf ) =
∂Φ

∂xf
+ µ

∂φ

∂xf

=⇒
λR(tf ) = µ,

λγ(tf ) = − sign(γf ),

λα(tf ) = 1.

(66)

Because λ̇γ = λ̇α = 0 we have λγ(t) = − sign(γf ) and
λα(t) = 1 for all t ∈ [t0, tf ].

2) Solution Characteristics:

Lemma 6. For games terminating with γf 6= 0, the game’s
Value function and optimal strategies are that of the one-
on-one game: V = α − |γ| − g(R) + g(1), and ψ∗ =
sin−1

(
− ν
R sign(γf )

)
. The second Defender is redundant.

Proof. Suppose that γf < 0; substituting the corresponding
λγ and λα values into (62) gives

H = −λRν cosψ − ν

R
sinψ − uD2 . (67)

Note that uD1
does not appear in (67) and thus D1 has no

effect on the optimality of the trajectory and is therefore
redundant. Again, since the final time is free, the Hamiltonian,
at terminal time, is subject to (14) [20]; that is, H (tf ) = 0.
Since (58) are autonomous, we have H (t) = 0 for all t ∈
[t0, tf ]. Therefore, (67) is identical to the Hamiltonian for the
one-on-one case between the Attacker and D2. Furthermore,
the terminal condition is the same, and the cost functional is
identical since θ = α− |γ| = J , in this case. Thus, the Value
function for the one-on-one case, (32), and the equilibrium
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Attacker heading control, (24) are the solution for this game
(making the appropriate substitution of θ = α − |γ|). The
− sign in the ψ∗ expression, in this case, accounts for the
case when γf > 0 in which the game plays out between the
Attacker and D1, by symmetry. In that case, the scenario is a
mirror image of Fig. 1 and the sign of uD1

is reversed (i.e.,
D1 moves clockwise) as is the sign of sinψ∗.

Since γf 6= 0 corresponds to either one-on-one game, we
focus our attention on the case when γf = 0. When γf = 0,
the Attacker terminates at a position which is equidistant from
the two defenders. Note that, according to (66), λγ(tf ) = λγf
is undefined when γf = 0. As before, the Defenders seek to
minimize the Hamiltonian, (62):

u∗D1
, u∗D2

= arg min
uD1

,uD2

H

= arg min
uD1

,uD2

uD1
(1− λγ) + uD2

(−1− λγ) .
(68)

Now, according to (68), if λγ > 1 or λγ < −1 then u∗D1
=

u∗D2
which means the Defenders should move in the same

direction. However, if this were the case then α̇ = 0 which is
clearly undesirable since α appears in the cost, J . Thus the
value of λγ is bounded:

− 1 ≤ λγ ≤ 1. (69)

By inspection, it is clear that the Defenders should seek to
minimize α̇ which occurs for

u∗D1
= −1, u∗D2

= 1. (70)

substituting in (66) and (70) into (62) leads to an expression
for λR:

H (t) = 0 = ν

√
λ2
R +

λ2
γ

R2
− 1

=⇒ λR = ±
√

1

ν2
−
λ2
γ

R2
.

Since Ṙf ∝ cosψf ∝ ν it must be that λRf , ν < 0 in order for
the state of the system to penetrate the boundary. In order to
maximize the Hamiltonian, it must be that sinψ∗ ∝ λγ ; thus,
from (63), λ̇R(t) < 0 for all t ∈ [t0, tf ]. Therefore, λR(t) < 0
for all t ∈ [t0, tf ], which leads to

λR = −
√

1

ν2
−
λ2
γ

R2
. (71)

Lemma 7. For games terminating with γf = 0, the equilibrium
heading angle is

ψ∗ = sin−1
(
λγ

ν

R

)
, (72)

and is bounded by − sin−1
(
ν
R

)
≤ ψ∗ ≤ sin−1

(
ν
R

)
.

Proof. Substituting (71) with (70) into (62) gives

H = 0 = −ν
√

1

ν2
−
λ2
γ

R2
cosψ + λγ

ν

R
sinψ. (73)

The Attacker seeks to maximize the Hamiltonian, and thus

cosψ∗ = −
√

1−
ν2λ2

γ

R2
, sinψ∗ = λγ

ν

R
, (74)

and −1 ≤ λγ ≤ 1 according to (69), hence − ν
R ≤ sinψ∗ ≤

ν
R .

Lemma 8. The trajectories corresponding to λγ = ±1 separate
the state space into regions of asymmetric termination (γf 6=
0) and symmetric termination (γf = 0).

Proof. Suppose λγ = 1, then the Attacker’s equilibrium
strategy is identical to the one-on-one game with D2 (c.f. (24)).
The trajectory is a straight line in the global (x, y)-frame since
the one-on-one game Attacker trajectories are straight (due to
Lemma 2). Trajectories with λγ < 1 lie on one side of this
surface and one-on-one trajectories (against D2) lie on the
other side.

Lemma 9. Attacker trajectories resulting in symmetric ter-
mination (γf = 0) are straight lines in the (x, y)-plane
terminating at a point I , where

I =

[
Ix
Iy

]
=

[
cos (β0 − α0)
sin (β0 − α0)

]
. (75)

Proof. Just as in Lemma 2, the Attacker trajectory is shown
to be a straight line in the inertial frame via direct substitution
of the equilibrium strategies. Consider Fig. 5 which shows the
Attacker’s heading angle ψ̃, w.r.t. the inertial (x, y)-plane. It
is expressed

ψ̃ = β + (2π − 2α) + α+ γ − ψ,

and its time derivative is

ψ̃ = β̇ − α̇+ γ̇ − ψ̇.

Substitution of the kinematics, (58), and the equilibrium
controls, (70) and (72), gives

˙̃
ψ = uD1

− 1

2
(uD1 − uD2) +

ν

R
sinψ−

1

2
(uD1 + uD2)− ∂

∂t
sin−1 λγ

ν

R

= −1 + 1 +
λγν

2

R2
− 0−

 −λγν

R2

√
1− λ2

γν
2

R2

 (−ν cosψ)

=
λγν

2

R2
− λγν

2

R2
= 0

Since the Attacker heading in the inertial (x, y)-plane is
constant, the Attacker path is a straight line. For symmetric
termination, the state of the system lies at R = 1 and γ = 0.
The γ = 0 angle corresponds to β − α. Because u∗D1

= −1

and u∗D2
= 1 (due to (74)) we have α̇ = −1 = β̇ and thus the

angle β − α is invariant in the global (x, y)-plane.

Lemma 10. For symmetric termination (γf = 0), the separat-
ing surface of the Game of Kind in the global (x, y)-plane
is given by a circular arc centered I with radius να0 whose
bounds are defined by sin−1(−ν) and sin−1(ν) relative to the
γ = 0 axis.

Proof. Symmetric termination trajectories terminate at I , de-
fined and according to Lemma 9. The limiting case occurs
when the Attacker reaches the target circle at the exact moment
in which the Defenders reach I (i.e. αf → 0). Due to (70),
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we have α̇ = −1. Therefore, the Defenders reach α = 0 in
α0 time. Symmetric termination trajectories may thus extend
from I for a maximum distance of να0; beyond this distance,
the Attacker cannot reach the target. The Attacker trajectories
are straight, also due to Lemma 9, thus the Game of Kind
surface is a circular arc. The bounds of the circular arc
are given directly by the range of ψ∗f which is obtained by
substituting R = 1 into (72) and applying the bounds stated
in Lemma 7.

The regions RA1 and RA2 are the sets of states for which
the game terminates with γf > 0 (one-on-one with D1) and
γf < 0 (one-on-one with D2), respectively (c.f. Lemma 6).
Similarly, the region RA1,2

is the set of states for which the
game terminates with γf = 0 and is completely specified
by Lemmas 8–10. The polar distance at which the Game of
Kind surface switches from the one-on-one surface, governed
by (27), and the two-on-one surface, described in Lemma 10,
is given by

Rs = +

√
ν2α2 + 1 + 2να

√
1− ν2, (76)

which is derived from the Law of Cosines (see Fig. 7).

Theorem 3. In the region RA1,2 , the equilibrium Attacker
heading angle is given by

ψ∗ = sin−1

(
sin γ

p

)
, (77)

and the associated Value function is

V (x) = αf = α− p

ν
, (78)

where

p = +
√
R2 + 1− 2R cos γ.

Proof. Consider the triangle formed by the Attacker’s position,
the target circle center, and the point I as defined in (75). By
construction, the Attacker starts in RA1,2 and its equilibrium
trajectory must terminate at I due to Lemma 9. Let the distance
traveled from A0 to I be p, which can be obtained from the
Law of Cosines (as defined above). Then, (77) can be obtained
from the Law of Sines. The time taken to traverse this path is
p/ν, and α̇ = −1 (due to (70)), thus (78) follows.

B. Game of Degree When Attacker Loses

In this section, we focus on the Game of Distance which
applies to the scenario when A is not able to reach the target
before one or both Defenders can align with A (i.e. α−|γ| =
0). The cost functional is the same as in the one-on-one case,
i.e., (3). This game terminates when the following condition
is satisfied

φd (xf , tf ) = αf − |γf | = 0. (79)

1) First Order Necessary Conditions: The Hamiltonian is

Hd = − σRν cosψ + σγ

(
ν

R
sinψ − 1

2
(uD1

+ uD2
)

)
+

σα
1

2
(uD1 − uD2) ,

(80)
and thus the equilibrium adjoint dynamics are

σ̇R = −∂Hd

∂R
= σγ

ν

R2
sinψ (81)

σ̇γ = −∂Hd

∂γ
= 0 (82)

σ̇α = −∂Hd

∂α
= 0. (83)

From the transversality condition [20], the terminal adjoint
values are

σ>(tf ) =
∂Φd
∂xf

+ η
∂φd
∂xf

(84)

=
[
−1 0 0

]
+ η

[
0 ±1 1

]
. (85)

When γf = 0, however, the derivative ∂φd
∂γf

, and thus σγf ,
is not defined. Evaluating (80) at final time and substituting
in the terminal adjoint values gives

Hd(tf ) = ν cosψf + σγf

(
ν

Rf
sinψf −

1

2
(uD1 + uD2)

)
+
η

2
(uD1

− uD2
)

(86)
The Hamiltonian at terminal time is given by [20]

Hd(tf ) = −∂Φd
∂tf
− η ∂φd

∂tf
= 0. (87)

2) Solution Characteristics:
Lemma 11. For games terminating with γf 6= 0, the game’s
Value function and optimal strategies correspond to the one-
on-one game (c.f. Theorem 1). The second Defender is redun-
dant.

Proof. The proof is similar to that of Lemma 6 in that the
Hamiltonian is formed and a particular sign of γf is assumed,
which results in reduction to the one-on-one Hamiltonian with
identical cost and terminal boundary condition. If, for example,
γf < 0 then σγf = η and is σγ is constant since σ̇γ = 0. The
Hamiltonian would be reduced to

Hd = −σRν cosψ + η
( ν
R

sinψ − uD2

)
,

which matches exactly with the one-Attacker one-Defender
Hamiltonian, (7). The cost functional (based on terminal
distance, (3)) is the same and thus the two-Defender scenario
reduces to the one-Defender scenario whenever γf 6= 0, by
symmetry.

Lemma 12. For games terminating with γf = 0, the equilib-
rium Attacker heading angle is

ψ∗ = sin−1
(
χ
ν

R

)
, χ ∈ [−1, 1] . (88)

Proof. The proof is similar to that of Lemma 7, but with the
associated first order necessary conditions for the Game of
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Distance from the previous section. Now, if A and D2 were
to play the one-on-one Game of Distance D2 would move
counterclockwise, i.e., uD2 = 1. The presence of D1 ought
not change the control of D2 – counterclockwise is still the
direction which closes the angular gap the between D2 and
A the fastest. Therefore, let u∗D1f

= −1 and u∗D2f
= 1.

As before, the Defenders must minimize the Hamiltonian,
including at final time. Thus from (87) we have

u∗D1f
, u∗D2f

= arg min
uD1f

,uD2f

H

= arg min
uD1f

,uD2f

(
−σγf + η

)
uD1f

+(
−σγf − η

)
uD2f

=⇒ u∗D1f
= − sign

(
−σγf + η

)
= −1,

u∗D2f
= − sign

(
−σγf − η

)
= 1.

The last two expressions, together, imply

−η ≤ σγf ≤ η

Since −η ≤ σγf ≤ η define σγf ≡ χη for χ ∈ [−1, 1]. Substi-
tution of the Defender controls into the terminal Hamiltonian
gives

Hd(tf ) = ν cosψf + χη
ν

Rf
sinψf − η = 0.

The Attacker must maximize the Hamiltonian, and thus

cosψ∗f =
1√

1 + χ2η2

R2
f

, sinψ∗f =
χη

Rf
√

1 + χ2η2

R2
f

.

The terminal Hamiltonian becomes

Hd(tf )∗ = ν

√
1 +

χ2η2

R2
f

− η = 0.

Solving for η:

η = ν

√
1 +

χ2η2

R2
f

η2 = ν2

(
1 +

χ2η2

R2
f

)
=⇒ η = ± νRf√

R2
f − χ2

Recall η ≡ σα ≡ ∂V
∂α ; thus an increase in α should give

advantage to the Attacker which implies η > 0. At general
time, the Hamiltonian is

Hd(t) = 0

= −σRν cosψ +
ν2χRf

R
√
R2
f − χ2

sinψ − νRf√
R2
f − χ2

Again, the Attacker maximizes the Hamiltonian,

cosψ∗ =
−σR√

σ2
R +

χ2ν2R2
f

R2(R2
f−χ2)

,

sinψ∗ =
νχRf

R
√
R2
f − χ2

√
σ2
R +

ν2χ2R2
f

R2(R2
f−χ2)

.

Substituting back into the Hamiltonian and solving for σR:

σR = ±

√√√√R2R2
f − ν2χ2R2

f

R2
(
R2
f − χ2

) .

Finally, substitution into the equilibrium Attacker control gives

sinψ∗ = χ
ν

R
.

Note that the form of the Attacker equilibrium control for
this scenario is identical to that of the Game of Angle scenario.
Lemma 13. The trajectories corresponding to χ = ±1 separate
the state space into regions of solo capture (γf 6= 0) and dual
capture (γf = 0).

Proof. The result follows from substitution of χ = 1 or χ =
−1 into (88).

Lemma 14. Attacker trajectories resulting in dual capture
(γf = 0) are straight lines in the (x, y)-plane terminating at a
point I ′ where

I ′ =

[
I ′x
I ′y

]
=

[
Rf cos (β0 − α0)
Rf sin (β0 − α0)

]
. (89)

Proof. The Attacker equilibrium control, (88), is identical in
form to that of the Game of Angle solution, (74), and thus
the Attacker path is a straight line for the same arguments
as presented in Lemma 9. The angle β0 − α0 corresponds to
the γ = 0 axis, which, as in Lemma 9, is invariant under
equilibrium play.

Lemma 15. The surfaces separating solo and dual capture are
given by the expression

w
(
R̂
)

= ±ν
2α

Rf
, (90)

where R̂ = R cos (γ) = Rf + να
√

1− ν2

R2
f

is the polar
distance measured along the γ = 0 axis and w is measured per-
pendicular to the γ = 0 axis, and R̂ ∈

[
1 + να0

√
1− ν2,∞

]
.

Proof. As in Lemma 10, the dual capture trajectory terminates
in α time (since α̇∗ = −1 and α = 0 in the dual capture
scenario). The dual capture trajectories are thus straight lines
(due to Lemma 14) of length να0 which terminate at I ′, as
defined in Lemma 14. Consider the upper limit of ψ∗f , which

is given by (88) with χ = 1 to be ψ∗ = sin−1
(
ν
Rf

)
. The

corresponding distance perpendicular to the γ = 0 axis is
w = sin sin−1

(
ν
Rf

)
· να0 = ν2α0

Rf
. This w corresponds to

a position which is να0

√
1− ν2

Rf
further than Rf , i.e., R̂ =
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Rf + να0

√
1− ν2

R2
f

. Taking the lower limit of ψ∗f gives the
corresponding negative width.

We define the regions RD1 and RD2 as the sets of states
for which the game terminates with γf > 0 (one-on-one
with D1) and γf < 0 (one-on-one with D2), respectively
(c.f. Lemma 11). Similarly, we define the region RD1,2

as the
set of states for which the game terminates with γf = 0 which
is completely specified by Lemma 10 and Lemmas 13–13.

Theorem 4. For states in the region RD1,2
the equilibrium

Attacker heading angle is

ψ∗ = γ + sin−1

(
R sin γ

να

)
(91)

and the Value function is

V (x) = −Rf = να
sinψ∗

sin γ
. (92)

Proof. The result follows from Lemmas 12–14 via a geometric
proof process similar to Theorem 3. Consider the triangle
4AI ′C, as shown in Fig. 6, where C is the target circle’s
center. Since the system begins in RD1,2

, the scenario ter-
minates with αf = γf = 0. The time for each Defender to
traverse an angle α around the perimeter of the target circle
is α, since α̇ = −1. Therefore, AI ′ = να. Using the Law of
Sines, the quantities are related as follows

Rf
sin (2π − ψ)

=
να

sin γ
=

R

sin (ψ − γ)

=⇒ Rf
− sinψ

=
να

sin γ
=

R

sin (ψ − γ)
.

The second equality may be rearranged to obtain (91). Like-
wise, the first equality may be rearranged to obtain (92).

D1

D2

α

R

×I
′

να

A
ψ

γRf

Fig. 6. Illustration of the derivation of the equilibrium Attacker heading
and Value function for the two-Defender Game of Distance with symmetric
termination.

C. Full Solution

The two Defender game is truly three dimensional (in
the reduced state space, i.e., R, γ, α). Although one may
obtain the equilibrium flowfield over the whole state space by
substituting the equilibrium strategies into the kinematics, it
is more illustrative to visualize the solution in the (x, y)-plane

for a particular α. Figure 7 shows the full solution of the two-
Defender one-Attacker game, including all of the separating
surfaces, regions, and salient features along with several rep-
resentative Attacker trajectories. Note that the solution may be
generalized to any number of Defenders simply by considering
the two Defenders nearest to the Attacker’s initial position.

να

sin−1 ν

α D1

D2

RA2

RA1

RA1,2

RD2

RD1

RD1,2

I

I ′

Rs

Fig. 7. Separating surfaces for the two Defender game in the realistic plane
for α0 = 3π

4
and ν = 0.8. Representative Attacker trajectories are shown in

the symmetric termination regions and Defender 1 regions. Open black circles
denote different Attacker initial positions, black ×’s denote the corresponding
terminal Attacker positions.

D. Alternative Attacker Win Scenario

As in the one-Defender case, we present here the solution
of the Game of Min Time wherein the cost functional is
min max−tf , i.e., (34). The analysis follows quite closely
with those in the preceding sections. Figure 8 shows the
solution with several representative trajectories.

“Cooperation” among the Defenders, i.e., where neither
Defender is redundant, only occurs when the Attacker begins
on the purple semi-circular section of ∂RA1

and ∂RA2
.

Otherwise, the Attacker plays the single-Defender version of
the game with the nearest Defender. The main advantage for
having two Defenders is that the state space RA1 ∪ RA2

is strictly smaller than the single-Defender state space, RA

(which is true for the Game of Angle as well).

IV. CONCLUSION

The problem of guarding a circular target by patrolling its
perimeter was considered. We formulated the one-Defender
one-Attacker and two-Defender one-Attacker scenarios as
zero-sum differential games with different cost/payoff func-
tionals depending on whether the Attacker could reach the
target’s perimeter before the Defender(s) could ‘lock on’. The
analysis formally verifies that the Attacker heading strategy
given in the literature for the one-Defender scenario is indeed
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να

sin−1 ν

α
D1

D2

RA2

RA1

Fig. 8. Two Defender Game of Min Time state space for a particular α with
ν = 0.8. The 3 Attacker trajectories, left-to-right, are 1) limiting, symmetric
termination, 2) evasive (A cannot aim directly at the target circle center), and
3) direct (A aims at the circle center). Initial conditions in the light shaded
regions result in direct trajectories, whereas the dark shaded regions represent
initial conditions resulting in evasive trajectories.

the saddle-point equilibrium strategy for the games posed
here [3]. For the two-Defender scenario, the state space was
partitioned into regions based on the equilibrium termination
condition. Analytic expressions for the separating surfaces
between these regions and Value functions for each case
were derived. The Attacker strategy in the Defenders-win,
symmetric termination region differs from that of [3], partly
due to differences in the termination condition and cost/payoff
functional. An alternative scenario in which the Attacker seeks
to reach the target in minimum time was also solved for both
the one- and two-Defender cases.

Future work on this problem will focus on understanding
the impact of these termination conditions on multi-Attacker
multi-Defender scenarios.
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