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Abstract—A scenario is considered wherein a stationary, turn
constrained agent (Turret) and a mobile agent (Defender) coop�
erate to protect the former from an adversarial mobile agent
(Attacker). The Attacker wishes to reach the Turret prior to
getting captured by either the Defender or Turret, if possible.
Meanwhile, the Defender and Turret seek to capture the Attacker
as far from the Turret as possible. This scenario is formulated
as a differential game and solved using a geometric approach.
Necessary and sufficient conditions for the Turret�Defender team
winning and the Attacker winning are given. In the case of
the Turret�Defender team winning equilibrium strategies for the
min max terminal distance of the Attacker to the Turret are given.
Three cases arise corresponding to solo capture by the Defender,
solo capture by the Turret, and capture simultaneously by both
Turret and Defender.

I. INTRODUCTION

Point defense is a critical task for securing an area from
mobile threats [1]. It involves identifying the threat(s) as well
as allocating defensive resources to neutralize them. The task
is especially pertinent based on recent attacks involving more
than 300 airborne threats aimed at ground-based targets [2].
As indicated by [3], there is a need for coordination among
different types of defensive assets, both ground-based and
airborne, to achieve success.

This paper considers a scenario in which a turret and mobile
defender cooperate to defend a circular region against a single
incoming threat (see Fig.  1).
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Fig.  1. Turret defense scenario.

Agent names are capitalized (after the style of Isaacs [4]).
The Turret is modeled as a stationary agent which can turn with
a bounded turn rate. The Defender and Attacker are modeled
as constant speed agents with control over their instantaneous
heading (i.e., have simple motion, are holonomic). The target
is a circle centered on the Turret’s position. The Turret-
Defender team is successful if it can capture the Attacker prior
to the latter reaching the target region. In order to capture
the Attacker, either the Defender must collide with it or the
Turret must align to its position. Thus the main objective
of this work is to analyze the cooperation among this team
comprised of heterogeneous agents. There are many consider-
ations that must be made for large-scale cooperation among
heterogeneous robotic teams such as task decomposition, task
allocation, sensing, and motion control [5]. This study focuses
on the motion control aspect (essentially assuming all preced-
ing items in the list have been addressed a priori). The inter-
esting and challenging problem of task allocation (e.g., in the
case of a many-versus-many engagement) is left for follow-on
studies, though several approaches have proven to be effective
(c.f., e.g., [6]). This work poses the scenario as a differential
game [4] in order to obtain equilibrium strategies for both
sides simultaneously. Differential game theory has previously
proven useful in the analysis of turret defense scenarios [7].

For guidance applications, in particular pursuit-evasion
scenarios, there are several examples of cooperation among a
team of homogeneous vehicles. In the seminal work [8], two
slow pursuers cooperate to minimize their approach distance to
an evader who must pass between them. By designing the con-
trol inputs for both pursuers simultaneously they can achieve
better performance than if they were to act in isolation. This is
an example of explicit cooperation. Similarly, both [9] and [10]
analyzed multiple-pursuer, single-evader scenarios although
with an objective of min max capture time. The presence of



additional pursuers further limited the survival time the evader
could achieve.

There are also examples of cooperation among teams of like
vehicles but with heterogeneous roles. A well-known example
is the active target defense scenario wherein a target and
defender cooperate to protect the target from an attacker [11].
Another is a perimeter defense example with patrollers (who
have a preset route) and defenders (who react to incoming
attackers) [12]. In [13] two mobile attackers cooperate to reach
a turret by having one attacker serve as a sacrifice in order for
the other to survive.

This work makes several contributions: 1) the Attacker’s
dominance region w.r.t. the Turret is characterized for the first
time 2) equilibrium strategies and Value function are obtained
for the game of min max terminal Attacker distance 3) closed-
form analytic conditions are given for the determination of
how the game ends. Importantly, this work demonstrates how
differential game theory can address cooperation among a
team with completely different capabilities.

The remainder of this paper is organized as follows. Sec-
tion II provides the mathematical formulation of the scenario.
Section III utilizes the necessary conditions for equilibrium to
ascertain properties of the equilibrium control strategies. Sec-
tion IV focuses on the geometry of the Attacker’s dominance
regions w.r.t. the Turret and Defender. Section V contains the
main results and the paper is concluded in Section VI.

II. SCENARIO FORMULATION

Let the boundary of the target region be specified by a circle
centered on the Turret’s position whose radius, without loss of
generality, is set to 1. Let 𝜈, 𝜇, and 𝜔 be the linear speed of
the Attacker, linear speed of the Defender, and maximum turn
rate of the Turret, respectively. It is assumed that the Attacker
is slower than the Defender and Turret, i.e., 𝜈 < 𝜇 and 𝜈 < 𝜔.
𝑇  is assumed to be at the origin w.l.o.g with initial look angle,
𝜃𝑇 , aligned with the positive 𝑥-axis. The kinematics are

𝐟 (𝐱, 𝑢𝐷, 𝑢𝐴, 𝑢𝑇 ) = 𝐱̇ =

[
[
[
[
[
[ ̇𝑥𝐷

̇𝑦𝐷
̇𝑥𝐴
̇𝑦𝐴
̇𝜃𝑇 ]
]
]
]
]
]

=

[
[
[
[
[
[𝜇 cos 𝑢𝐷

𝜇 sin 𝑢𝐷
𝜈 cos 𝑢𝐴
𝜈 sin 𝑢𝐴

𝜔𝑢𝑇 ]
]
]
]
]
]

,

𝑢𝐷, 𝑢𝐴 ∈ [−𝜋, 𝜋], 𝑢𝑇 ∈ [−1, 1].

(1)

where the subscripts 𝐷, 𝐴, 𝑇  correspond to the Defender,
Attacker, and Turret, respectively. Also, define the positions
of the Defender and Attacker as 𝐷 = [𝑥𝐷, 𝑦𝐷]⊤ and 𝐴 =
[𝑥𝐴, 𝑦𝐴]⊤, respectively. For notational convenience, define the
polar coordinates for a point 𝑃  w.r.t. 𝑇 :

𝑟𝑃 = ‖𝑃‖, 𝜃𝑃 = atan2(𝑦𝑃 , 𝑥𝑃 ) − 𝜃𝑇 , (2)
where ‖·‖ represents the 2-norm.

Let capture by the Defender and Turret be defined, respec-
tively, as

𝒞𝐷 = {𝐱 | 𝑟𝐷 = 𝑟𝐴 > 1  and 𝜃𝐷 = 𝜃𝐴},
𝒞𝑇 = {𝐱 | 𝜃𝐴 = 0  and 𝑟𝐴 > 1}.

(3)

Thus the set 𝒞𝐷,𝑇 = 𝒞𝐷 ∩ 𝒞𝑇  represents simultaneous cap-
ture by both 𝐷 and 𝑇 .

Consider the case wherein the 𝐷-𝑇  team is able to capture
𝐴 before the latter can reach its goal of 𝑟𝐴 = 1. Let the final
time be defined as

𝑡𝑓 = inf{𝑡 | 𝐱 ∈ 𝒞𝐷 ∪ 𝒞𝑇 }, (4)

and the final state as 𝐱𝑓 = 𝐱(𝑡𝑓). The goal of 𝐴 is to get as
close as possible to its goal whereas the 𝐷-𝑇  team seeks to
capture 𝐴 as far from 𝑇  as possible. Thus the objective cost
functional is defined as

𝐽(𝐱, 𝑢𝐷(·), 𝑢𝐴(·), 𝑢𝑇 (·)) = 𝑟𝐴𝑓
− 1, (5)

which 𝐴 aims to minimize and the 𝐷-𝑇  team wishes to max-
imize. This scenario falls under the category of a two-player,
zero-sum differential game. The Value function, if it exists,
satisfies Isaacs’ condition [4]

𝑉 (𝐱) = min
𝑢𝐴(·)

max
𝑢𝐷(·),𝑢𝑇 (·)

𝐽(𝐱, 𝑢𝐷(·), 𝑢𝐴(·), 𝑢, 𝑢𝑇 (·))

= max
𝑢𝐷(·),𝑢𝑇 (·)

min
𝑢𝐴(·)

𝐽(𝐱, 𝑢𝐷(·), 𝑢𝐴(·), 𝑢, 𝑢𝑇 (·)).
(6)

This Value function also satisfies the Nash equilibrium prop-
erty:

𝐽(𝐱, 𝑢𝐷, 𝑢∗
𝐴, 𝑢𝑇 ) ≤

𝐽(𝐱, 𝑢∗
𝐷, 𝑢∗

𝐴, 𝑢∗
𝑇 )⏟⏟⏟⏟⏟⏟⏟

𝑉 (𝐱)

≤ 𝐽(𝐱, 𝑢∗
𝐷, 𝑢𝐴, 𝑢∗

𝑇 )

∀𝑢𝐷 ∈ 𝒰𝐷, 𝑢𝐴 ∈ 𝒰𝐴, 𝑢𝑇 ∈ 𝒰𝑇 ,

(7)

where 𝒰𝐷, 𝒰𝐴, and 𝒰𝑇  are the sets of admissible controls for
the agents, respectively. The starred (∗) strategies are referred
to as the equilibrium strategies.

III. EQUILIBRIUM STRATEGIES

In order to characterize the optimal/equilibrium strategies the
necessary conditions for equilibrium are utilized. The Hamil-
tonian is formed as the inner product of a vector of costates,
𝛌 = [𝜆𝑥𝐴

, 𝜆𝑦𝐴
, 𝜆𝑥𝐷

, 𝜆𝑦𝐷
, 𝜆𝜃𝑇

]
⊤

, with the kinematics (since
this is a terminal cost game):

ℋ = 𝜆𝑥𝐴
𝜈 cos 𝑢𝐴 + 𝜆𝑦𝐴

𝜈 sin 𝑢𝐴

+𝜆𝑥𝐷
𝜇 cos 𝑢𝐷 + 𝜆𝑦𝐷

𝜇 sin 𝑢𝐷 + 𝜆𝜃𝑇
𝜔𝑢𝑇 . (8)

The necessary conditions for equilibrium dictate that the
equilibrium costate dynamics satisfy 𝛌̇ = −𝜕ℋ

𝜕𝐱  [14] which
implies

𝛌̇ = 0. (9)
Another necessary condition for equilibrium is that the equi-
librium controls for 𝐴 and the 𝐷-𝑇  team must minimize and
maximize, respectively, the Hamiltonian:

cos 𝑢∗
𝐴 = − 𝜆𝑥𝐴

√𝜆2
𝑥𝐴

+𝜆2
𝑦𝐴

, sin 𝑢∗
𝐴 = − 𝜆𝑦𝐴

√𝜆2
𝑥𝐴

+𝜆2
𝑦𝐴

(10)



cos 𝑢∗
𝐷 = 𝜆𝑥𝐷

√𝜆2
𝑥𝐷

+𝜆2
𝑦𝐷

, sin 𝑢∗
𝐷 = 𝜆𝑦𝐷

√𝜆2
𝑥𝐷

+𝜆2
𝑦𝐷

(11)

𝑢∗
𝑇 = sign(𝜆𝜃𝑇

) (12)

Lemma 1.  For the differential game specified by (1) – (6) the
Attacker and Defender’s equilibrium strategies are to take a
straight-line trajectory while the Turret’s equilibrium strategy
is to turn in one direction with its max turn rate.

Proof.  The result follows from the fact that the equilibrium
control strategies, (10) – (12), are functions only of the costates
which are constant. ∎

IV. CAPTURE GEOMETRIES

In this section, the three termination cases for the Attacker-
losing scenario are analyzed in detail. For the cases of solo
capture (by 𝐷 or by 𝑇  alone), the Attacker’s dominance region
w.r.t. the capturing agent is derived. Additionally, differential
games involving the 𝐴 and the capturing agent are solved and
connected to the geometry of the Attacker’s respective domi-
nance region.
A. Capture by the Defender

In the first termination case, 𝐴 is captured by 𝐷 alone; the
engagement ends with the agents being coincident per (3). This
situation may arise when 𝑇  is initially pointed far away from
𝐴 and 𝐷 or if 𝑇  turns relatively slowly, for example. For all of
the analysis in this section, 𝑇  is ignored and its influence on
the kinematics is zeroed out. When the Turret is not involved,
the scenario is a particular case of Guarding a Target from [4].

First define 𝐴’s dominance region w.r.t. 𝐷 as the set of all
points in which 𝐴 can reach before 𝐷 can:

ℛ𝐴/𝐷 = {𝐲 ∈ ℝ2 | ‖𝐲−𝐴‖
𝜈 < ‖𝐲−𝐷‖

𝜇 }. (13)

It is well known (c.f., e.g., [4]) that, under the simple motion
model in (1), the boundary of this region is given by the
Apollonius circle, i.e., the circle whose center and radius are
given by

𝐜 = (𝑥𝐜, 𝑦𝐜) = (1 + 𝛼)𝐴 − 𝛼𝐷, 𝜌 = 𝜇𝛼
𝜈

‖𝐷 − 𝐴‖, (14)

where 𝛼 = 𝜈2

𝜇2−𝜈2 . Thus ℛ𝐴/𝐷 can be redefined as
ℛ𝐴/𝐷 = {𝐲 ∈ ℝ2 |‖𝐲 − 𝐜‖ < 𝜌}. (15)

It is assumed that the origin is not contained within ℛ𝐴/𝐷.

Lemma 2.  For the differential game specified by (1) – (6),
when 𝑇  has no effect on the outcome of the game under equi-
librium play, the equilibrium capture point is the closest point
on the Apollonius circle, 𝜕ℛ𝐴/𝐷, to 𝑇 . That is the Value of the
game is

𝑉 (𝐱) = ‖𝐜‖ − 𝜌 − 1. (16)
The equilibrium strategies of 𝐴 and 𝐷 are given by

cos 𝑢∗
𝐴 = 𝑥∗

𝐩𝐷
−𝑥𝐴

‖𝐩∗
𝐷−𝐴‖ , sin 𝑢∗

𝐴 = 𝑦∗
𝐩𝐷

−𝑦𝐴
‖𝐩∗

𝐷−𝐴‖

cos 𝑢∗
𝐷 = 𝑥∗

𝐩𝐷
−𝑥𝐷

‖𝐩∗
𝐷−𝐷‖ , sin 𝑢∗

𝐷 = 𝑦∗
𝐩𝐷

−𝑦𝐷
‖𝐩∗

𝐷−𝐷‖ ,
(17)

where the equilibrium intercept point is defined as

𝐩∗
𝐷 = (𝑥∗

𝐩𝐷
, 𝑦∗

𝐩𝐷
) = 𝐜

‖𝐜‖
(‖𝐜‖ − 𝜌). (18)

Proof.  Since it is assumed that 𝑇  has no effect on the outcome
of the game its relevant costate 𝜆𝜃 is set to 0. Substituting the
equilibrium controls, (10) and (11), into the Hamiltonian, (8),
yields

ℋ = −𝜈√𝜆2
𝑥𝐴

+ 𝜆2
𝑦𝐴

+ 𝜇√𝜆2
𝑥𝐷

+ 𝜆2
𝑦𝐷

(19)

According to Isaacs’ Verification Theorem [4], a candidate
Value function may be verified as the solution to a differential
game by ensuring it is continuously differentiable and satisfies
the Hamilton-Jacobi-Isaacs (HJI) equation:

min
𝑢𝐴

max
𝑢𝐷

{𝑙(𝐱, 𝑢𝐴, 𝑢𝐷) + 𝜕𝑉
𝜕𝑡

+ 𝛁𝐱𝑉 · 𝐱̇∗} = 0, (20)

where 𝑙 is a running cost, which is 0 in this case. The candidate
Value function stated above does not depend on time and thus
𝜕𝑉
𝜕𝑡 = 0. Note that, by construction, 𝛌 = 𝛁𝐱𝑉  and therefore

the Hamiltonian is identical to the term 𝛁𝐱𝑉 · 𝐱̇∗. Therefore,
it is sufficient to show that ℋ = 0. Taking partial derivatives
of (16) w.r.t. the states gives

𝜆𝑥𝐴
= 𝜕𝑉

𝜕𝑥𝐴
= ((1+𝛼)𝑥𝐴−𝛼𝑥𝐷)(1+𝛼)

‖𝐜‖ − 𝜇𝛼
𝜈

𝑥𝐴−𝑥𝐷
‖𝐷−𝐴‖

𝜆𝑦𝐴
= 𝜕𝑉

𝜕𝑦𝐴
= ((1+𝛼)𝑦𝐴−𝛼𝑦𝐷)(1+𝛼)

‖𝐜‖ − 𝜇𝛼
𝜈

𝑦𝐴−𝑦𝐷
‖𝐷−𝐴‖

𝜆𝑥𝐷
= 𝜕𝑉

𝜕𝑥𝐷
= − ((1+𝛼)𝑥𝐴−𝛼𝑥𝐷)𝛼

‖𝐜‖ + 𝜇𝛼
𝜈

𝑥𝐴−𝑥𝐷
‖𝐷−𝐴‖

𝜆𝑦𝐷
= 𝜕𝑉

𝜕𝑦𝐷
= − ((1+𝛼)𝑦𝐴−𝛼𝑦𝐷)𝛼

‖𝐜‖ + 𝜇𝛼
𝜈

𝑦𝐴−𝑦𝐷
‖𝐷−𝐴‖ .

(21)

It is straight forward to show that substituting the above ex-
pressions into (19) yields ℋ = 0 as required. The equilibrium
control strategies, (17), follow from Lemma 1 and the fact that
the closest point on the Apollonius circle to the origin lies on
the line passing through its center. ∎

This result is a special case of the more general result from
[15] which accounts for arbitrary convex target sets, multiple
pursuers, and higher dimensions.
B. Capture by the Turret

In the second termination case, 𝐴 is captured by 𝑇  alone; the
engagement ends with 𝑇  aligning its line-of-sight with 𝐴’s
position, i.e. driving 𝜃𝐴 → 0 per (3). This situation may arise
if, for example, 𝑇  is initially aimed near 𝐴 or 𝐷 is too far away
to affect the outcome. As before, the states pertaining to 𝐷,
who is redundant in this case, are ignored. For the analysis in
this section, without loss of generality, let 𝜃𝐴 ∈ (0, 2𝜋) and
assume that 𝑇  turns CCW (i.e., 𝑢𝑇 = 1).



Let 𝒫 = (0, ∞) × (−𝜋, 𝜋] be the set of polar coordinates
with angles measured w.r.t. 𝑇 ’s look angle. Define 𝐴’s domi-
nance region w.r.t. 𝑇  as the set of all points in which 𝐴 can
reach before 𝑇  can align with it.

Lemma 3.  The dominance region of 𝐴 w.r.t. 𝑇  is given by
ℛ𝐴/𝑇 = {(𝑟, 𝜃) ∈ 𝒫 |

𝑟2 + 𝑟2
𝐴 − 2𝑟𝑟𝐴 cos(𝜃 − 𝜃𝐴) ≤ 𝜈2𝜃2

𝜔2 }.
(22)

Proof.  The fastest way for 𝐴 to reach the point 𝐩 = (𝑟, 𝜃) is
to take a straight-line trajectory. Consider the triangle △ 𝑇𝐴𝐩
whose sides are given by 𝑟𝐴, 𝑟, and 𝐴’s path to 𝐩. The Law of
Cosines based on the angle at 𝑇  yields

‖𝐩 − 𝐴‖2 = 𝑟2 + 𝑟2
𝐴 − 2𝑟𝑟𝐴 cos(𝜃 − 𝜃𝐴). (23)

𝐴’s squared time-to-go is thus ‖𝐩 − 𝐴‖2/𝜈2. Meanwhile, 𝑇 ’s
squared time-to-go is based on turning directly to 𝜃, i.e.,
𝜃2/𝜔2. Hence (22) follows. ∎

Consider the boundary of 𝐴’s dominance region w.r.t. 𝑇 , i.e.,
𝜕ℛ𝐴/𝑇  which is obtained when the equality of (22) holds.
Solving for 𝑟 gives

𝑟 = 𝑟𝐴 cos(𝜃 − 𝜃𝐴) ± √𝜈2𝜃2

𝜔2 − 𝑟2
𝐴 sin2(𝜃 − 𝜃𝐴). (24)

Thus, in order for 𝑟 to have two non-negative real roots the
following must be satisfied

𝜃 ∈ [−𝜋
2

+ 𝜃𝐴, 𝜋
2

+ 𝜃𝐴], (25)

𝑟𝐴 ≥ 𝜈|𝜃|
𝜔

≥ 𝑟𝐴|sin(𝜃 − 𝜃𝐴)|. (26)

The left-hand inequality of (26) implies that 𝑇  must be able to
turn an angle 𝜃 at or before the time in which 𝐴 can traverse a
distance 𝑟𝐴. For the remainder, it is assumed that the LHS is
satisfied, i.e., 𝐴 starts sufficiently far from 𝑇 . Thus the bound-
aries of the 𝜃 domain of ℛ𝐴/𝑇  are defined by the points where
the RHS inequality of (26) is equal. The following results are
used to obtain these boundaries. Define a function

𝑔(𝑟) = √𝜔2𝑟2

𝜈2 − 1 + sin−1( 𝜈
𝑟𝜔

). (27)

Lemma 4.  If the state of 𝐴 is such that 𝜃𝐴 < 𝜃𝐵(𝑟𝐴) where

𝜃𝐵(𝑟) = √𝜔2𝑟2

𝜈2 − 1 − cos−1( 𝜈
𝑟𝜔

) (28)

then 𝐴 cannot guarantee being able to reach 𝑟 ≤ 𝜈
𝜔  without

getting captured by 𝑇 .

Proof.  From [16] the barrier which separates 𝐴 being able
to reach a distance 𝜈

𝜔  to 𝑇  or not is given by 𝜃𝐵(𝑟) = 𝑔(𝑟) −
𝑔( 𝜈

𝜔). Substituting in (27) and evaluating at 𝑟 = 𝑟𝐴 yields the
result. ∎

Lemma 5.  Consider 𝜃𝐴 > 0 without loss of generality. If the
state of 𝐴 is such that 𝜃𝐴 > 𝜃𝐵(𝑟𝐴) then: 1) there exists ex-
actly one angle, 𝜃 ∈ (max{0, 𝜃𝐴 − 𝜋

2}, 𝜃𝐴], and exactly one
angle, 𝜃 ∈ (𝜃𝐴, 𝜃𝑢], such that

𝜈𝜃
𝜔

= 𝑟𝐴|sin(𝜃 − 𝜃𝐴)|, (29)

where

𝜃𝑢 = cos−1( 𝜈
𝜔𝑟𝐴

) + 𝜃𝐴 (30)

and 2) the range [𝜃, 𝜃] is the domain of 𝐴’s dominance region
w.r.t. 𝑇  as given by (24).

Proof.  For convenience, define 𝑚(𝜃) = 𝜈𝜃
𝜔  and 𝑛(𝜃) =

𝑟𝐴|sin(𝜃 − 𝜃𝐴)|; the derivatives of these functions w.r.t. 𝜃 are
denoted as 𝑚′ and 𝑛′, respectively:

𝑚′(𝜃) = 𝜈
𝜔

𝑛′(𝜃) = 𝑟𝐴 sign(sin(𝜃 − 𝜃𝐴)) cos(𝜃 − 𝜃𝐴)
(31)

First, define 𝜃min = max{0, 𝜃𝐴 − 𝜋
2} and consider the range

𝜃 ∈ (𝜃min, 𝜃𝐴]. The function 𝑛(𝜃) is monotonically decreasing
while the function 𝑚(𝜃) is monotonically increasing. Also,
𝑛(𝜃min) > 𝑚(𝜃min) and 𝑛(𝜃𝐴) < 𝑚(𝜃𝐴), which implies there
is a unique angle in this range, 𝜃, where 𝑚(𝜃) = 𝑛(𝜃). Next,
consider the range 𝜃 ∈ (𝜃𝐴, 𝜃𝑢]. In this range, sign(sin(𝜃 −
𝜃𝐴)) = 1 since 𝜃𝑢 < 𝜃𝐴 + 𝜋

2 , so the derivative of 𝑛 simplifies
to

𝑛′(𝜃) = 𝑟𝐴 cos(𝜃 − 𝜃𝐴). (32)
Both 𝑚 and 𝑛 are monotonically increasing in this range
(i.e., 𝑚′, 𝑛′ > 0). However, 𝑛″ = −𝑟𝐴 sin(𝜃 − 𝜃𝐴) < 0 so
𝑛′ is monotonically decreasing in this range. At 𝜃 = 𝜃𝐴, we
have 𝑛′(𝜃𝐴) > 𝑚′(𝜃𝐴) (i.e., 𝑟𝐴 > 𝜈

𝜔  since, otherwise, 𝐴 has
angular rate advantage over 𝑇 ). By construction, at 𝜃𝑢, we have
𝑛′(𝜃𝑢) = 𝑚′(𝜃𝑢) = 𝜈

𝜔 . Therefore, due to the monotonicity of
𝑛′, we have 𝑛′ > 𝑚′ in the whole range. Thus, if an intersec-
tion exists in this range, it must be unique. Finally, if 𝑛(𝜃𝑢) >
𝑚(𝜃𝑢), then an intersection must exist due to the Intermedi-
ate Value Theorem. This condition is 𝑟𝐴 sin(𝜃𝑢 − 𝜃𝐴) > 𝜈𝜃𝑢

𝜔 .
After substituting in (30) and rearranging, this condition be-
comes 𝜃𝐴 ≤ 𝜃𝐵(𝑟𝐴) which was one of the premises. Therefore
𝐴’s dominance region w.r.t. 𝑇  is well-defined over the domain
[𝜃, 𝜃]. ∎

Lemma 6.  For the differential game specified by (1) – (6),
when 𝐷 has no effect on the outcome of the game under equi-
librium play, the Value of the game is

𝑉 (𝐱) = 𝑔−1(𝑔(𝑟𝐴) − 𝜃𝐴) − 1 (33)
and the equilibrium strategy for 𝐴 is

𝑢̂∗
𝐴 = sin−1( 𝜈

𝜔𝑟𝐴
), (34)

where 𝑢̂∗
𝐴 is measured CW w.r.t. the line from 𝐴 to 𝑇 .



Proof.  This result comes from the solution given in [16, The-
orem 1] (i.e., the solution to the Turret-Attacker game of min/
max terminal distance, which is identical to this game when
𝐷 is not involved). 𝐴’s strategy has been slightly modified to
account for the assumption that 𝑢∗

𝑇 = 1. ∎

Finally, the equilibrium capture point for capture by 𝑇  alone is

𝐩∗
𝑇 = (𝑟∗

𝐩𝑇
, 𝜃∗

𝐩𝑇
) = (𝑟∗

𝐴𝑓
, 𝜔(𝑟𝐴 − 𝑟∗

𝐴)
𝜈

), (35)

where 𝑟∗
𝐴𝑓

 is defined in (33). Note that 𝑔 is transcendental
and so 𝑔−1 does not have an analytic form thus 𝑟∗

𝐴𝑓
 must be

obtained numerically.
C. Simultaneous Capture

In the third and final termination case, 𝐴 is captured by 𝑇
and 𝐷 simultaneously; the engagement end with 𝑇  aligning its
line-of-sight with 𝐴 and 𝐷 who are coincident. This generally
occurs when 𝐴 is ‘between’ 𝑇  and 𝐷 while not being too close
to one or the other.

Because of Lemma 1, the equilibrium capture point for
simultaneous capture must occur on the boundaries of both
of the previously defined dominance regions; moreover, if
multiple intersections exist, it should be the point closest to the
origin, i.e.,

𝐴∗
𝑓 = min

𝑟
{(𝑟, 𝜃) ∈ 𝜕ℛ𝐴/𝑇 ∩ 𝜕ℛ𝐴/𝐷}. (36)

Concerning the computation of 𝜕ℛ𝐴/𝑇 ∩ 𝜕ℛ𝐴/𝐷, it is
straightforward to express the Apollonius circle (i.e., 𝜕ℛ𝐴/𝐷)
in polar coordinates via

𝑟 = 𝑟𝐜 cos(𝜃 − 𝜃𝐜) ± √𝜌2 − 𝑟2
𝐜 sin2(𝜃 − 𝜃𝐜),

𝜃 ∈ [𝜃𝐜 − sin−1 𝜌
𝑟𝐜

, 𝜃𝐜 + sin−1 𝜌
𝑟𝐜

],
(37)

where 𝑟𝐜 = ‖𝐜‖ and 𝜃𝐜 = atan2(𝑥𝐜, 𝑦𝐜). Then the intersection
closest to the origin may be found by equating the negative
versions of (37) and (24) and solving for 𝜃. Define

𝑡(𝜃) = 𝑟𝐴 cos(𝜃 − 𝜃𝐴) − √𝜈2𝜃2

𝜔2 − 𝑟2
𝐴 sin2(𝜃 − 𝜃𝐴),

𝑑(𝜃) = 𝑟𝐜 cos(𝜃 − 𝜃𝐜) − √𝜌2 − 𝑟2
𝐜 sin2(𝜃 − 𝜃𝐜),

(38)

which represent the ‘bottom halves’ of 𝜕ℛ𝐴/𝑇  and 𝜕ℛ𝐴/𝐷,
respectively. However, solving for 𝜃 s.t. 𝑡(𝜃) = 𝑑(𝜃) cannot be
accomplished in closed form and thus the equilibrium capture
point must be obtained numerically. Since both 𝑡 and 𝑑 have
specified domains, the equilibrium capture point must occur
in the intersection of these domains, i.e.,

𝜃∗
𝐴𝑓

∈ [max{𝜃, 𝜃𝐜 − sin−1 𝜌
𝑟𝐜

}, min{𝜃, 𝜃𝐜 + sin−1 𝜌
𝑟𝐜

}],

s.t. 𝑑(𝜃∗
𝐴𝑓

) = 𝑡(𝜃∗
𝐴𝑓

).
(39)

Finally, the Value of the game, in this case is

𝑉 (𝐱) = 𝑑(𝜃∗
𝐴𝑓

) − 1, (40)

and the equilibrium capture point is

𝐩∗
𝐷𝑇 = (𝑟∗

𝐩𝐷𝑇
, 𝜃∗

𝐩𝐷𝑇
) = (𝑑(𝜃∗

𝐴𝑓
), 𝜃∗

𝐴𝑓
), (41)

where 𝜃∗
𝐴𝑓

 is defined in (39).

V. FULL SOLUTION

The previous section established the equilibrium control for 𝐷
and 𝐴 and equilibrium outcomes for each of the three termi-
nation cases. This section completes the solution through the
determination of which termination case is optimal and the
equilibrium turning direction for 𝑇 .

Lemma 7.  For 𝜃𝐴 < 𝜃𝐵(𝑟𝐴), the point 𝐩∗
𝐷 ∈ ℛ𝐴/𝑇  if

‖𝐩∗
𝐷‖ > 𝜈

𝜔 , (42)
and

‖𝐴−𝐩∗
𝐷‖

𝜈 ≤ atan2(𝑦∗
𝐩𝐷

,𝑥∗
𝐩𝐷

)
𝜔 . (43)

Proof.  The result follows from comparing the time-to-go of 𝐴
and 𝑇  to the point 𝐩∗

𝐷 which is valid because the assumptions
preclude 𝐴 from passing through the region where it has an
angular rate advantage over 𝑇  (i.e., 𝑟 < 𝜈

𝜔 ). ∎

Lemma 8.  For 𝜃𝐴 < 𝜃𝐵(𝑟𝐴), the point 𝐩∗
𝑇 ∈ ℛ𝐴/𝐷 if

‖𝐩†‖ > 𝑣
𝜔 , (44)

and
‖𝐴−𝐩†‖

𝜈 > atan(𝑦†
𝐩,𝑥†

𝐩)
𝜔 , (45)

where 𝐩† is the point on 𝜕ℛ𝐴/𝐷 corresponding to 𝐴 taking
the equilibrium 𝐴 vs. 𝑇  heading, (34).

Proof.  The proof is similar to that of the previous Lemma and
is omitted. ∎

Note that the point 𝐩† can be obtained from geometry and
is thus easier to compute than 𝐩∗

𝑇  which requires numerical
computation of 𝑟∗

𝐴𝑓
.

Theorem 1 (Termination Determination).  For the differential
game specified by (1) – (6) with 𝑇  turning CCW and 𝜃𝐴 <
𝜃𝐵(𝑟𝐴) the following hold:

1) if the closest point on the Apollonius circle to 𝑇  is inside
𝐴’s dominance region w.r.t. 𝑇 , i.e., 𝐩∗

𝐷 ∈ ℛ𝐴/𝑇  then
solo capture by 𝐷 is optimal (where 𝐩∗

𝐷 is defined in
(18)) and the solution is given by Lemma 2

2) if the closest point on 𝜕ℛ𝐴/𝑇  to 𝑇  is inside the Apollo-
nius circle, i.e., 𝐩∗

𝑇 ∈ ℛ𝐴/𝐷 then solo capture by 𝑇  is
optimal (where 𝐩∗

𝑇  is defined in (35)) and the solution
is given by Lemma 6

3) otherwise, simultaneous capture by 𝑇  and 𝐷 is optimal
and all agents head to 𝐩∗

𝐷𝑇  (defined in (41)) and the
Value of the game is 𝑉 (𝐱) = ‖𝐩∗

𝐷𝑇 ‖ − 1.



Proof.  For the first two statements, i.e., those concerning solo
capture, the points 𝐩∗ are the closest point on 𝐴’s dominance
region w.r.t. the capturing agent. If that point is inside of
𝐴’s dominance region w.r.t. the other agent, it implies, by
construction, that capture at that point must occur before the
other agent can catch 𝐴. 𝐴 can do no better w.r.t. the capturing
agent – thus any deviation from heading to 𝐩∗ would allow the
capturing agent to capture 𝐴 even further away from 𝑇 .

If neither of the solo capture aim points are safely reachable
by 𝐴, then an intersection between 𝜕ℛ𝐴/𝑇  and 𝜕ℛ𝐴/𝐷 must
exist by construction. Moreover, this intersection must be the
equilibrium capture point (i.e., the closest point in ℛ𝐴/𝑇 ∩
ℛ𝐴/𝐷 to 𝑇 ) due to the fact that 𝑑(𝜃) (as defined in (38)) must
be monotonically increasing for 𝜃 > 𝜃∗

𝐩𝐷𝑇
 and 𝑡(𝜃) must be

monotonically increasing for decreasing 𝜃 < 𝜃∗
𝐩𝐷𝑇

. ∎

For cases where 𝜃𝐴 > 𝜃𝐵(𝑟𝐴) the geometry of ℛ𝐴/𝑇  is not
well defined. Here, the game (with 𝑇  turning CCW) may be
solved by computing

𝐩∗ = (𝑥∗
𝐩, 𝑦∗

𝐩) = argmin
𝐩∈ℱ

‖𝐩‖ (46)

where the feasible set is defined by

ℱ = {(𝑥, 𝑦) ∈ ℛ𝐴/𝐷 − 𝒮 | ‖𝐴−(𝑥,𝑦)‖
𝜈 ≤ atan2(𝑦,𝑥)

𝜔 }, (47)

where 𝒮 is the target set (𝑟 ≤ 1) and its shadow w.r.t. 𝐴. The
exclusion of 𝒮 precludes consideration of possible points in
ℛ𝐴/𝐷 wherein 𝐴’s path would have to pass through the target.

Theorem 2 (Full Solution).  For the differential game speci-
fied by (1) – (6) denote the solution of the game with 𝑇
turning CCW as 𝑉 +(𝐱). When 𝜃𝐴 < 𝜃𝐵(𝑟𝐴), 𝑉 + is given by
Theorem 1, otherwise 𝑉 + = ‖𝐩∗‖ − 1 where 𝐩∗ is defined in
(46). Denote the solution of the game with 𝑇  turning CW as
𝑉 −(𝐱) which can be obtained by using the same process as
for 𝑉 ∗ but with 𝐴 and 𝐷 mirrored about 𝑇 ’s look angle. The
solution of the game is

𝑉 (𝐱) = max{𝑉 +, 𝑉 −}, (48)
along with the respective equilibrium capture point and
agents’ strategies associated with the maximizer.

Proof.  From Lemma 1 we have that 𝑇 ’s control, 𝑢𝑇 , is con-
stant and is either −1 or 1. The quantities 𝑉 + and 𝑉 − are the
equilibrium Values for 𝑇  turning CCW or CW in the sense that
𝐴 and 𝑇 ’s strategies are in equilibrium. One of these quantities
must be the Value of the game since there are only two options
for 𝑇 ’s equilibrium control. Therefore, the Value must be the
maximum of these since 𝑇  wishes to capture 𝐴 as far away as
possible. ∎

It is possible for the CCW and CW Values to be the same,
i.e., 𝑉 + = 𝑉 −. In this case, the state of the system lies on the
Dispersal Surface (DS). Both choices for 𝑇 ’s turning direction
are equally optimal and thus 𝑇  is free to choose either one.

It is assumed that this choice may be communicated with 𝐷
as they are on the same team, and thus 𝐷 would know the
proper equilibrium capture point to aim at. 𝐴 on the other hand
can only guess at which direction 𝑇  will start turning. If 𝐴
guesses incorrectly it will suffer a small performance penalty
(i.e., be captured further away) and must readjust accordingly.
It is shown in the Appendix that the ℛ𝐴/𝑇  corresponding to
the direction 𝑇  turns remains a subset of ℛ𝐴/𝑇  at initial time,
and likewise the ℛ𝐴/𝑇  at initial time for the opposite direction
remains a subset of all subsequent ℛ𝐴/𝑇  for that direction.
Thus 𝐴 has no way to exploit the singularity (c.f., e.g., [17]).

Examples for each of the three termination cases are shown
in Fig.  2 – Fig.  4. In each of the examples 𝜕ℛ𝐴/𝐷 is blue,
𝜕ℛ𝐴/𝑇  is green, 𝜇 = 𝜔 = 1, and 𝜈 = 0.7. Only the CCW
turning direction for 𝑇  is considered as 𝜃𝐴 is relatively small
in each case. The Value of the game is depicted by a dashed
purple ring. Initial conditions are shown with filled circles
whereas open circles denote terminal conditions.

VI. CONCLUSION

A novel differential game was formulated and solved involving
a cooperative team comprised of a Turret and Defender against
an Attacker. The analysis focused on the case wherein the 𝐷-𝑇
team could capture 𝐴 before it could reach 𝑇 . Three terminal

Fig.  2. Solo capture by the Defender at 𝐩∗
𝐷.

Fig.  3. Solo capture by the Turret at 𝐩∗
𝑇 .



Fig.  4. Simultaneous capture.

cases are possible: solo capture by 𝐷, solo capture by 𝑇 , and
simultaneous capture by both 𝐷 and 𝑇 . Conditions were given
by which the equilibrium termination could be ascertained
from the initial condition and problem parameters. The case
wherein 𝐴 is inside the barrier (i.e., able to reach the speed
ratio circle w.r.t. to 𝑇 ) was given a cursory treatment in this
initial study. A more detailed analysis of the outcome in this
case is left for future work. Also, the partitioning of the state
space into regions of 𝐴 winning, solo capture, and simultane-
ous capture, is left for future work. Most importantly, this work
successfully demonstrated an example of cooperation among
a heterogeneous team.

APPENDIX

A. Monotonicity of Dominance Regions w.r.t. Turret

Suppose, w.l.o.g., that 𝑇  turns CCW, i.e., 𝑢𝑇 = 1. Let
ℛ+

𝐴/𝑇 (𝑡) denote 𝐴’s dominance region over 𝑇  at time 𝑡 if 𝑇
were to continue moving CCW. Similarly define ℛ−

𝐴/𝑇 (𝑡) as if
𝑇  were to switch to CW, i.e., 𝑢𝑇 = −1. In the following, it is
shown that ℛ+

𝐴/𝑇 (𝑡) strictly contracts while ℛ−
𝐴/𝑇 (𝑡) strictly

expands.

Lemma 9.  If 𝑇  turns CCW and 𝜃𝐴 < 𝜃𝐵(𝑟𝐴) then
ℛ+

𝐴/𝑇 (𝑡2) ⊂ ℛ+
𝐴/𝑇 (𝑡1), (49)

for all 𝑡2 > 𝑡1 ≥ 0.

Proof.  (by contradiction). Let there exist a point 𝐩 ∈
ℛ+

𝐴/𝑇 (𝑡2) such that 𝐩 ∉ ℛ+
𝐴/𝑇 (𝑡1). Since 𝐩 ∈ ℛ+

𝐴/𝑇 (𝑡2), 𝐴
can reach 𝐩 before getting captured by 𝑇 . That is,

∃𝑡𝑓 > 𝑡2  such that 𝐴(𝑡𝑓) = 𝐩. (50)

Let 𝐴(𝑡) for 𝑡 ∈ [𝑡2, 𝑡𝑓] denote the corresponding trajectory
of 𝐴. Now consider 𝐴’s concatenated trajectory, 𝐴(𝑡) for 𝑡 ∈
[𝑡1, 𝑡𝑓], which shows that 𝐴(𝑡𝑓) = 𝐩 when 𝑇  is moving CCW
for the entire duration [𝑡1, 𝑡𝑓]. Consequently, 𝐩 must be in
ℛ+

𝐴/𝑇 (𝑡1). ∎

Lemma 10.  If 𝑇  turns CCW and 2𝜋 − 𝜃𝐴 < 𝜃𝐵(𝑟𝐴) then

ℛ−
𝐴/𝑇 (𝑡1) ⊂ ℛ−

𝐴/𝑇 (𝑡2), (51)

for all 𝑡2 > 𝑡1 ≥ 0 where 𝐴 has not been captured or reached
its target prior to 𝑡2.

Proof.  The proof is based on comparing the times to go for
𝐴 and 𝑇  to a point, which is how ℛ𝐴/𝑇  is constructed. Recall
that 𝑇  moves CCW whereas ℛ−

𝐴/𝑇 (𝑡) is 𝐴’s dominance region
w.r.t. 𝑇  if 𝑇  were to move clockwise starting at 𝑡. Consider a
point 𝐩 ∈ ℛ−

𝐴/𝑇 (𝑡1) – the point 𝐩 is reachable by 𝐴 without
being captured when 𝑇  moves CW. Consider any possible
trajectory of 𝐴 in the time interval 𝑡 ∈ [𝑡1, 𝑡2]. That is, 𝐴(𝑡2)
may be anywhere in the disk of radius 𝜈(𝑡2 − 𝑡1) centered on
𝐴(𝑡1). In the meantime, it has been assumed that 𝑇  moved
CCW.

Now it is shown that 𝐩 must be in ℛ−
𝐴/𝑇 (𝑡2). If 𝑇  were to,

at 𝑡2 begin moving CW, by the time that 𝑇  reached its look
angle at 𝑡1, (i.e., 𝑇 (𝑡1)) 𝐴 can reach 𝐴(𝑡1) since ‖𝐴(𝑡2) −
𝐴(𝑡1)‖ ≤ 𝜈(𝑡2 − 𝑡1) = 𝜈

𝜔(𝑇 (𝑡2) − 𝑇 (𝑡1)) by construction –
hence 𝐩 ∈ ℛ−

𝐴/𝑇 (𝑡2) since the agents have returned to their
initial positions. ∎

B. Computation of 𝐩†

The Apollonius circle represents the locus of points where 𝐴
is captured by 𝐷 when 𝐴 takes a constant heading and 𝐷 is
on the collision course. In other words, it is the locus of points
whose ratio of distances to 𝐴 and 𝐷 are equal to the speed
ratio 𝜈𝜇 . First, from [18], the distance traveled by 𝐴 to a point 𝐩
on the Apollonius circle along a constant heading 𝜓 measured
w.r.t. the line of sight 𝐴 − 𝐷 is given by

‖𝐴 − 𝐩‖ = 𝛼‖𝐴 − 𝐷‖(cos 𝜓 + √𝜇2

𝜈2 − sin2 𝜓). (52)

The point 𝐩† is based on 𝐴 taking its 1v1 equilibrium heading
w.r.t. 𝑇  which is [16]

𝑢̂𝐴 = sin−1( 𝜈
𝜔𝑟𝐴

). (53)

Converting to the Cartesian frame gives
𝑢𝐴 = 𝜃𝐴 − 𝜋 − 𝑢̂𝐴. (54)

Finally, converting this heading to an angle relative to the line-
of-sight gives

𝜓† = 𝑢𝐴 − atan2(𝑦𝐴 − 𝑦𝐷, 𝑥𝐴 − 𝑥𝐷). (55)
Substituting this quantity in for 𝜓 into (52) gives the distance
‖𝐴 − 𝐩†‖. Finally,

𝐩† = ‖𝐴 − 𝐩†‖[cos 𝜓†

sin 𝜓†]. (56)
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