Complete Solution of the Lady in the Lake Scenario
A. Von Moll, M. Pachter
Published in International Symposium on Dynamic Games and Applications, 2024
In the Lady in the Lake scenario, a mobile agent, ๐ฟ, is pitted against an agent, ๐, who is constrained to move along the perimeter of a circle. ๐ฟ is assumed to begin inside the circle and wishes to escape to the perimeter with some finite angular separation from ๐ at the perimeter. This scenario has, in the past, been formulated as a zerosum differential game wherein ๐ฟ seeks to maximize terminal separation and ๐ seeks to minimize it. Its solution is well-known. However, there is a large portion of the state space for which the canonical solution does not yield a unique equilibrium strategy. This paper provides such a unique strategy by solving an auxiliary zero-sum differential game. In the auxiliary differential game, ๐ฟ seeks to reach a point opposite of ๐ at a radius for which their maximum angular speeds are equal (i.e., the antipodal point). ๐ฟ wishes to minimize the time to reach this point while ๐ wishes to maximize it. The solution of the auxiliary differential game is comprised of a Focal Line, a Universal Line, and their tributaries. The Focal Line tributariesโ equilibrium strategy for ๐ฟ is semi-analytic, while the Universal Line tributariesโ equilibrium strategy is obtained in closed form.